Parameter estimation for partially observed hypoelliptic diffusions
Author
Abstract
Suggested Citation
DOI: 10.1111/j.1467-9868.2008.00689.x
Download full text from publisher
References listed on IDEAS
- Isao Shoji & Tohru Ozaki, 1997. "Comparative study of estimation methods for continuous time stochastic processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(5), pages 485-506, September.
- P. E. Kloeden & Eckhard Platen & H. Schurz & M. Sørensen, 1996. "On effects of discretization on estimators of drift parameters for diffusion processes," Published Paper Series 1996-2, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
- Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
- Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Iguchi, Yuga & Beskos, Alexandros & Graham, Matthew M., 2024. "Parameter inference for degenerate diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
- Comte, Fabienne & Prieur, Clémentine & Samson, Adeline, 2017. "Adaptive estimation for stochastic damping Hamiltonian systems under partial observation," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3689-3718.
- Shoji, Isao, 2013. "Filtering for partially observed diffusion and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4966-4976.
- Vialard, François-Xavier, 2013. "Extension to infinite dimensions of a stochastic second-order model associated with shape splines," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2110-2157.
- Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
- Samson, Adeline & Thieullen, Michèle, 2012. "A contrast estimator for completely or partially observed hypoelliptic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2521-2552.
- Hermann Singer, 2011. "Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 375-413, December.
- Dureau, Joseph & Kalogeropoulos, Konstantinos & Baguelin, Marc, 2013. "Capturing the time-varying drivers of an epidemic using stochastic dynamical systems," LSE Research Online Documents on Economics 41749, London School of Economics and Political Science, LSE Library.
- Cattiaux, Patrick & León, José R. & Prieur, Clémentine, 2014. "Estimation for stochastic damping hamiltonian systems under partial observation—I. Invariant density," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1236-1260.
- Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
- Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hermann Singer, 2011. "Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 375-413, December.
- Cysne, Rubens Penha, 2004.
"On the Statistical Estimation of Diffusion Processes: A Partial Survey,"
Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 24(2), November.
- Cysne, Rubens Penha, 2004. "On the statistical estimation of diffusion processes - a partial survey," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 570, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Markussen, Bo, 2009. "Laplace approximation of transition densities posed as Brownian expectations," Stochastic Processes and their Applications, Elsevier, vol. 119(1), pages 208-231, January.
- Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
- Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
- Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
- Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007.
"Indirect robust estimation of the short-term interest rate process,"
Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
- Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2005. "Indirect Robust Estimation of the Short-term Interest Rate Process," Working Paper Series 2005-4, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
- Veronika Czellar & G. Andrew Karolyi & Elvezio Ronchetti, 2007. "Indirect robust estimation of the short-term interest rate process," Post-Print hal-00463251, HAL.
- Veronika Czellar & G. Andrew Karolyi & Elvezio Ronchetti, 2005. "Indirect Robust Estimation of the Short-term interest Rate Process," FAME Research Paper Series rp135, International Center for Financial Asset Management and Engineering.
- Nafidi, A. & Gutiérrez, R. & Gutiérrez-Sánchez, R. & Ramos-Ábalos, E. & El Hachimi, S., 2016. "Modelling and predicting electricity consumption in Spain using the stochastic Gamma diffusion process with exogenous factors," Energy, Elsevier, vol. 113(C), pages 309-318.
- A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0.
"Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations,"
Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
- Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the wood for the trees: A critical evaluation of methods to estimate the parameters of stochastic differential equations," Stan Hurn Discussion Papers 2006, School of Economics and Finance, Queensland University of Technology.
- Peter C.B.Phillips & Jun Yu, "undated".
"Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance,"
Working Papers
CoFie-08-2009, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Peter C.B. Phillips & Jun Yu, 2007. "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Cowles Foundation Discussion Papers 1597, Cowles Foundation for Research in Economics, Yale University.
- Peter C. B. Phillips & Jun Yu, 2006. "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Development Economics Working Papers 22471, East Asian Bureau of Economic Research.
- Konstantinos Kalogeropoulos & Gareth O. Roberts & Petros Dellaportas, 2007.
"Inference for stochastic volatility models using time change transformations,"
Papers
0711.1594, arXiv.org.
- Kalogeropoulos, Konstantinos & Roberts, Gareth O. & Dellaportas, Petros, 2010. "Inference for stochastic volatility models using time change transformations," LSE Research Online Documents on Economics 31421, London School of Economics and Political Science, LSE Library.
- Kalogeropoulos, Konstantinos & Roberts, Gareth O. & Dellaportas, Petros, 2007. "Inference for stochastic volatility model using time change transformations," MPRA Paper 5697, University Library of Munich, Germany.
- Kim, Myung Suk & Wang, Suojin, 2008. "Consistent estimation in regression models for the drift function in some continuous time models," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2682-2691, January.
- Eva María Ramos-Ábalos & Ramón Gutiérrez-Sánchez & Ahmed Nafidi, 2020. "Powers of the Stochastic Gompertz and Lognormal Diffusion Processes, Statistical Inference and Simulation," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
- Michael Sørensen, 2008. "Parametric inference for discretely sampled stochastic differential equations," CREATES Research Papers 2008-18, Department of Economics and Business Economics, Aarhus University.
- Cysne, Rubens Penha, 2004. "On the statistical estimation of diffusion processes: a survey," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 540, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- J. Jimenez & R. Biscay & T. Ozaki, 2005. "Inference Methods for Discretely Observed Continuous-Time Stochastic Volatility Models: A Commented Overview," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(2), pages 109-141, June.
- Chang, Jinyuan & Chen, Songxi, 2011. "On the Approximate Maximum Likelihood Estimation for Diffusion Processes," MPRA Paper 46279, University Library of Munich, Germany.
- Lee, Yoon Dong & Song, Seongjoo & Lee, Eun-Kyung, 2014. "The delta expansion for the transition density of diffusion models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 694-705.
- Martin J. Lenardon & Anna Amirdjanova, 2006. "Interaction between stock indices via changepoint analysis," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 22(5‐6), pages 573-586, September.
- S. C. Kou & Benjamin P. Olding & Martin Lysy & Jun S. Liu, 2012. "A Multiresolution Method for Parameter Estimation of Diffusion Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1558-1574, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:71:y:2009:i:1:p:49-73. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.