IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v127y2017i11p3689-3718.html
   My bibliography  Save this article

Adaptive estimation for stochastic damping Hamiltonian systems under partial observation

Author

Listed:
  • Comte, Fabienne
  • Prieur, Clémentine
  • Samson, Adeline

Abstract

The paper considers a process Zt=(Xt,Yt) where Xt is the position of a particle and Yt its velocity, driven by a hypoelliptic bi-dimensional stochastic differential equation. Under adequate conditions, the process is stationary and geometrically β-mixing. In this context, we propose an adaptive non-parametric kernel estimator of the stationary density p of Z, based on n discrete time observations with time step δ. Two observation schemes are considered: in the first one, Z is the observed process, in the second one, only X is measured. Estimators are proposed in both settings and upper risk bounds of the mean integrated squared error (MISE) are proved and discussed in each case, the second one being more difficult than the first one. We propose a data driven bandwidth selection procedure based on the Goldenshluger and Lespki (2011) method. In both cases of complete and partial observations, we can prove a bound on the MISE asserting the adaptivity of the estimator. In practice, we take advantage of a very recent improvement of the Goldenshluger and Lespki (2011) method provided by Lacour et al. (2016), which is computationally efficient and easy to calibrate. We obtain convincing simulation results in both observation contexts.

Suggested Citation

  • Comte, Fabienne & Prieur, Clémentine & Samson, Adeline, 2017. "Adaptive estimation for stochastic damping Hamiltonian systems under partial observation," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3689-3718.
  • Handle: RePEc:eee:spapps:v:127:y:2017:i:11:p:3689-3718
    DOI: 10.1016/j.spa.2017.03.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414917300844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.03.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samson, Adeline & Thieullen, Michèle, 2012. "A contrast estimator for completely or partially observed hypoelliptic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2521-2552.
    2. Asin, Nicolas & Johannes, Jan, 2016. "Adaptive non-parametric estimation in the presence of dependence," LIDAM Discussion Papers ISBA 2016007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Yvo Pokern & Andrew M. Stuart & Petter Wiberg, 2009. "Parameter estimation for partially observed hypoelliptic diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 49-73, January.
    4. Cattiaux, Patrick & León, José R. & Prieur, Clémentine, 2014. "Estimation for stochastic damping hamiltonian systems under partial observation—I. Invariant density," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1236-1260.
    5. Comte, F. & Genon-Catalot, V. & Rozenholc, Y., 2009. "Nonparametric adaptive estimation for integrated diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 811-834, March.
    6. Wu, Liming, 2001. "Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 205-238, February.
    7. Arnaud Gloter, 2006. "Parameter Estimation for a Discretely Observed Integrated Diffusion Process," Post-Print hal-00404901, HAL.
    8. Comte, F. & Merlevède, F., 2005. "Super optimal rates for nonparametric density estimation via projection estimators," Stochastic Processes and their Applications, Elsevier, vol. 115(5), pages 797-826, May.
    9. Arnaud Gloter, 2006. "Parameter Estimation for a Discretely Observed Integrated Diffusion Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 83-104, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dexheimer, Niklas & Strauch, Claudia, 2022. "Estimating the characteristics of stochastic damping Hamiltonian systems from continuous observations," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 321-362.
    2. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    2. Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
    3. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    4. Cattiaux, Patrick & León, José R. & Prieur, Clémentine, 2014. "Estimation for stochastic damping hamiltonian systems under partial observation—I. Invariant density," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1236-1260.
    5. Samson, Adeline & Thieullen, Michèle, 2012. "A contrast estimator for completely or partially observed hypoelliptic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2521-2552.
    6. Anna Melnykova, 2020. "Parametric inference for hypoelliptic ergodic diffusions with full observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 595-635, October.
    7. Dexheimer, Niklas & Strauch, Claudia, 2022. "Estimating the characteristics of stochastic damping Hamiltonian systems from continuous observations," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 321-362.
    8. Nicolau, João, 2008. "Modeling financial time series through second-order stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2700-2704, November.
    9. Yunyan Wang & Lixin Zhang & Mingtian Tang, 2012. "Re-weighted functional estimation of second-order diffusion processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(8), pages 1129-1151, November.
    10. Arnaud Gloter, 2007. "Efficient estimation of drift parameters in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(4), pages 495-519, October.
    11. Comte, F. & Genon-Catalot, V. & Rozenholc, Y., 2009. "Nonparametric adaptive estimation for integrated diffusions," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 811-834, March.
    12. Jean Jacod & Mark Podolskij, 2012. "A Test for the Rank of the Volatility Process: The Random Perturbation Approach," Global COE Hi-Stat Discussion Paper Series gd12-268, Institute of Economic Research, Hitotsubashi University.
    13. Jean Jacod & Mark Podolskij, 2012. "A test for the rank of the volatility process: the random perturbation approach," CREATES Research Papers 2012-57, Department of Economics and Business Economics, Aarhus University.
    14. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    15. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    16. Salima El Kolei & Fabien Navarro, 2022. "Contrast estimation for noisy observations of diffusion processes via closed-form density expansions," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 303-336, July.
    17. Song Yuping & Hou Weijie & Zhou Shengyi, 2019. "Variance reduction estimation for return models with jumps using gamma asymmetric kernels," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(5), pages 1-38, December.
    18. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    19. Hermann Singer, 2011. "Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 375-413, December.
    20. Song, Renming & Xie, Longjie, 2020. "Well-posedness and long time behavior of singular Langevin stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1879-1896.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:11:p:3689-3718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.