Bounds on regeneration times and convergence rates for Markov chains
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Robert B. Lund & Richard L. Tweedie, 1996. "Geometric Convergence Rates for Stochastically Ordered Markov Chains," Mathematics of Operations Research, INFORMS, vol. 21(1), pages 182-194, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Svetlana Ekisheva & Mark Borodovsky, 2011. "Uniform Accuracy of the Maximum Likelihood Estimates for Probabilistic Models of Biological Sequences," Methodology and Computing in Applied Probability, Springer, vol. 13(1), pages 105-120, March.
- Jarner, S. F. & Tweedie, R. L., 2002. "Convergence rates and moments of Markov chains associated with the mean of Dirichlet processes," Stochastic Processes and their Applications, Elsevier, vol. 101(2), pages 257-271, October.
- Roberts, Gareth O. & Rosenthal, Jeffrey S., 2002. "One-shot coupling for certain stochastic recursive sequences," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 195-208, June.
- Quan Zhou & Jun Yang & Dootika Vats & Gareth O. Roberts & Jeffrey S. Rosenthal, 2022. "Dimension‐free mixing for high‐dimensional Bayesian variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1751-1784, November.
- Athreya, Krishna B. & Roy, Vivekananda, 2014. "When is a Markov chain regenerative?," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 22-26.
- Yang, Jun & Roberts, Gareth O. & Rosenthal, Jeffrey S., 2020. "Optimal scaling of random-walk metropolis algorithms on general target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6094-6132.
- Jarner, Søren Fiig & Hansen, Ernst, 2000. "Geometric ergodicity of Metropolis algorithms," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 341-361, February.
- Mattingly, J. C. & Stuart, A. M. & Higham, D. J., 2002. "Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise," Stochastic Processes and their Applications, Elsevier, vol. 101(2), pages 185-232, October.
- Jeffrey S. Rosenthal, 2003. "Geometric Convergence Rates for Time-Sampled Markov Chains," Journal of Theoretical Probability, Springer, vol. 16(3), pages 671-688, July.
- Hervé, Loïc & Ledoux, James, 2014. "Approximating Markov chains and V-geometric ergodicity via weak perturbation theory," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 613-638.
- Gareth O. Roberts & Jeffrey S. Rosenthal, 2019. "Hitting Time and Convergence Rate Bounds for Symmetric Langevin Diffusions," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 921-929, September.
- Fort, G. & Moulines, E., 2003. "Polynomial ergodicity of Markov transition kernels," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 57-99, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hervé, Loïc & Ledoux, James, 2014. "Approximating Markov chains and V-geometric ergodicity via weak perturbation theory," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 613-638.
- Kam C. Yuen & Yuhua Lu & Rong Wu, 2009. "The compound Poisson process perturbed by a diffusion with a threshold dividend strategy," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(1), pages 73-93, January.
- Gareth O. Roberts & Jeffrey S. Rosenthal, 2019. "Hitting Time and Convergence Rate Bounds for Symmetric Langevin Diffusions," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 921-929, September.
- Xi, Fubao & Yin, G., 2010. "Asymptotic properties of nonlinear autoregressive Markov processes with state-dependent switching," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1378-1389, July.
- Daly, Fraser, 2024. "On Stein’s method for stochastically monotone single-birth chains," Statistics & Probability Letters, Elsevier, vol. 206(C).
- Wenpin Tang, 2019. "Exponential ergodicity and convergence for generalized reflected Brownian motion," Queueing Systems: Theory and Applications, Springer, vol. 92(1), pages 83-101, June.
- Stoyanov, Jordan & Pirinsky, Christo, 2000. "Random motions, classes of ergodic Markov chains and beta distributions," Statistics & Probability Letters, Elsevier, vol. 50(3), pages 293-304, November.
More about this item
Keywords
Renewal times Geometric ergodicity Rates of convergence Markov chain Monte Carlo Shift coupling Computable bounds;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:80:y:1999:i:2:p:211-229. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.