IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v10y2008i2d10.1007_s11009-007-9046-2.html
   My bibliography  Save this article

Optimal Scaling for Random Walk Metropolis on Spherically Constrained Target Densities

Author

Listed:
  • Peter Neal

    (University of Manchester)

  • Gareth Roberts

    (Lancaster University
    University of Warwick)

Abstract

We consider the problem of optimal scaling of the proposal variance for multidimensional random walk Metropolis algorithms. It is well known, for a wide range of continuous target densities, that the optimal scaling of the proposal variance leads to an average acceptance rate of 0.234. Therefore a natural question is, do similar results hold for target densities which have discontinuities? In the current work, we answer in the affirmative for a class of spherically constrained target densities. Even though the acceptance probability is more complicated than for continuous target densities, the optimal scaling of the proposal variance again leads to an average acceptance rate of 0.234.

Suggested Citation

  • Peter Neal & Gareth Roberts, 2008. "Optimal Scaling for Random Walk Metropolis on Spherically Constrained Target Densities," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 277-297, June.
  • Handle: RePEc:spr:metcap:v:10:y:2008:i:2:d:10.1007_s11009-007-9046-2
    DOI: 10.1007/s11009-007-9046-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-007-9046-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-007-9046-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gareth O. Roberts & Jeffrey S. Rosenthal, 1998. "Optimal scaling of discrete approximations to Langevin diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 255-268.
    2. Breyer, L. A. & Roberts, G. O., 2000. "From metropolis to diffusions: Gibbs states and optimal scaling," Stochastic Processes and their Applications, Elsevier, vol. 90(2), pages 181-206, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbas, Kamran & Tang, Yincai, 2014. "Objective Bayesian analysis of the Frechet stress–strength model," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 169-175.
    2. Peter Neal & Gareth Roberts, 2011. "Optimal Scaling of Random Walk Metropolis Algorithms with Non-Gaussian Proposals," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 583-601, September.
    3. Yang, Jun & Roberts, Gareth O. & Rosenthal, Jeffrey S., 2020. "Optimal scaling of random-walk metropolis algorithms on general target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6094-6132.
    4. Jeong Eun Lee & Ross McVinish & Kerrie Mengersen, 2011. "Population Monte Carlo Algorithm in High Dimensions," Methodology and Computing in Applied Probability, Springer, vol. 13(2), pages 369-389, June.
    5. Xu, Ancha & Tang, Yincai, 2010. "Reference analysis for Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 185-192, January.
    6. Min Wang & Xiaoqian Sun & Chanseok Park, 2016. "Bayesian analysis of Birnbaum–Saunders distribution via the generalized ratio-of-uniforms method," Computational Statistics, Springer, vol. 31(1), pages 207-225, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O. F. Christensen & J. Møller & R. P. Waagepetersen, 2001. "Geometric Ergodicity of Metropolis-Hastings Algorithms for Conditional Simulation in Generalized Linear Mixed Models," Methodology and Computing in Applied Probability, Springer, vol. 3(3), pages 309-327, September.
    2. Yang, Jun & Roberts, Gareth O. & Rosenthal, Jeffrey S., 2020. "Optimal scaling of random-walk metropolis algorithms on general target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6094-6132.
    3. Kamatani, Kengo, 2020. "Random walk Metropolis algorithm in high dimension with non-Gaussian target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 297-327.
    4. Zanella, Giacomo & Bédard, Mylène & Kendall, Wilfrid S., 2017. "A Dirichlet form approach to MCMC optimal scaling," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 4053-4082.
    5. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    6. Mamatzakis, Emmanuel C. & Tsionas, Mike G., 2021. "Making inference of British household's happiness efficiency: A Bayesian latent model," European Journal of Operational Research, Elsevier, vol. 294(1), pages 312-326.
    7. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    8. Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
    9. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    10. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    11. Arnak S. Dalalyan, 2017. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
    12. M Ludkin & C Sherlock, 2023. "Hug and hop: a discrete-time, nonreversible Markov chain Monte Carlo algorithm," Biometrika, Biometrika Trust, vol. 110(2), pages 301-318.
    13. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 95-107.
    14. Peter Neal & Gareth Roberts, 2011. "Optimal Scaling of Random Walk Metropolis Algorithms with Non-Gaussian Proposals," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 583-601, September.
    15. G. O. Roberts & O. Stramer, 2002. "Langevin Diffusions and Metropolis-Hastings Algorithms," Methodology and Computing in Applied Probability, Springer, vol. 4(4), pages 337-357, December.
    16. Shao, Wei & Guo, Guangbao & Meng, Fanyu & Jia, Shuqin, 2013. "An efficient proposal distribution for Metropolis–Hastings using a B-splines technique," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 465-478.
    17. Anandamayee Majumdar & Corinna Gries & Jason Walker, 2011. "A non-stationary spatial generalized linear mixed model approach for studying plant diversity," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1935-1950, October.
    18. Reihaneh Entezari & Patrick E. Brown & Jeffrey S. Rosenthal, 2020. "Bayesian spatial analysis of hardwood tree counts in forests via MCMC," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    19. N. Englezos & X. Kartala & P. Koundouri & M. Tsionas & A. Alamanos, 2023. "A Novel HydroEconomic - Econometric Approach for Integrated Transboundary Water Management Under Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(4), pages 975-1030, April.
    20. Moffa, Giusi & Kuipers, Jack, 2014. "Sequential Monte Carlo EM for multivariate probit models," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 252-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:10:y:2008:i:2:d:10.1007_s11009-007-9046-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.