IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i10p5865-5887.html
   My bibliography  Save this article

Lévy driven CARMA generalized processes and stochastic partial differential equations

Author

Listed:
  • Berger, David

Abstract

We give a new definition of a Lévy driven CARMA random field, defining it as a generalized solution of a stochastic partial differential equation (SPDE). Furthermore, we give sufficient conditions for the existence of a mild solution of our SPDE. Our model unifies all known definitions of CARMA random fields, and in particular for dimension 1 we obtain the classical CARMA process.

Suggested Citation

  • Berger, David, 2020. "Lévy driven CARMA generalized processes and stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 5865-5887.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:10:p:5865-5887
    DOI: 10.1016/j.spa.2020.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441491930328X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klepsch, J. & Klüppelberg, C. & Wei, T., 2017. "Prediction of functional ARMA processes with an application to traffic data," Econometrics and Statistics, Elsevier, vol. 1(C), pages 128-149.
    2. Brockwell, Peter J. & Lindner, Alexander, 2009. "Existence and uniqueness of stationary Lévy-driven CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2660-2681, August.
    3. M. Ghahramani & A. Thavaneswaran, 2006. "Financial applications of ARMA models with GARCH errors," Journal of Risk Finance, Emerald Group Publishing, vol. 7(5), pages 525-543, November.
    4. Peter J. Brockwell & Vincenzo Ferrazzano & Claudia Klüppelberg, 2013. "High-frequency sampling and kernel estimation for continuous-time moving average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 385-404, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fageot, Julien & Humeau, Thomas, 2021. "The domain of definition of the Lévy white noise," Stochastic Processes and their Applications, Elsevier, vol. 135(C), pages 75-102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pham, Viet Son, 2020. "Lévy-driven causal CARMA random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7547-7574.
    2. Vicky Fasen & Florian Fuchs, 2013. "Spectral estimates for high-frequency sampled continuous-time autoregressive moving average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 532-551, September.
    3. Ernst, Philip A. & Brown, Lawrence D. & Shepp, Larry & Wolpert, Robert L., 2017. "Stationary Gaussian Markov processes as limits of stationary autoregressive time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 180-186.
    4. Tomáš Rubín & Victor M. Panaretos, 2020. "Functional lagged regression with sparse noisy observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 858-882, November.
    5. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    6. Sauri, Orimar & Veraart, Almut E.D., 2017. "On the class of distributions of subordinated Lévy processes and bases," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 475-496.
    7. Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022. "Seasonal functional autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
    8. Shang Han Lin, 2020. "A Comparison of Hurst Exponent Estimators in Long-range Dependent Curve Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-39, January.
    9. Brockwell, Peter J. & Lindner, Alexander, 2015. "CARMA processes as solutions of integral equations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 221-227.
    10. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    11. Zahra Sokoot & Navideh Modarresi & Farzaneh Niknejad, 2017. "Modeling credit default swap premiums with stochastic recovery rate," Papers 1706.05703, arXiv.org.
    12. Fasen, Vicky & Fuchs, Florian, 2013. "On the limit behavior of the periodogram of high-frequency sampled stable CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 229-273.
    13. Xinli Yu & Zheng Chen & Yuan Ling & Shujing Dong & Zongyi Liu & Yanbin Lu, 2023. "Temporal Data Meets LLM -- Explainable Financial Time Series Forecasting," Papers 2306.11025, arXiv.org.
    14. Florian Fuchs & Robert Stelzer, 2013. "Spectral Representation of Multivariate Regularly Varying Lévy and CARMA Processes," Journal of Theoretical Probability, Springer, vol. 26(2), pages 410-436, June.
    15. Ragnhild Noven & Almut Veraart & Axel Gandy, 2015. "A Lévy-driven rainfall model with applications to futures pricing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 403-432, October.
    16. Jürgen Kampf & Georgiy Shevchenko & Evgeny Spodarev, 2021. "Nonparametric estimation of the kernel function of symmetric stable moving average random functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(2), pages 337-367, April.
    17. Appleby, John A.D. & Patterson, Denis D., 2021. "Growth and fluctuation in perturbed nonlinear Volterra equations," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    18. Vicky Fasen, 2016. "Dependence Estimation for High-frequency Sampled Multivariate CARMA Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 292-320, March.
    19. Brockwell, Peter J. & Lindner, Alexander, 2015. "Prediction of Lévy-driven CARMA processes," Journal of Econometrics, Elsevier, vol. 189(2), pages 263-271.
    20. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01821815, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:10:p:5865-5887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.