IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v73y2021i2d10.1007_s10463-020-00751-6.html
   My bibliography  Save this article

Nonparametric estimation of the kernel function of symmetric stable moving average random functions

Author

Listed:
  • Jürgen Kampf

    (University of Rostock)

  • Georgiy Shevchenko

    (Taras Shevchenko National University of Kiev)

  • Evgeny Spodarev

    (Ulm University)

Abstract

We estimate the kernel function of a symmetric alpha stable ( $$S\alpha S$$ S α S ) moving average random function which is observed on a regular grid of points. The proposed estimator relies on the empirical normalized (smoothed) periodogram. It is shown to be weakly consistent for positive definite kernel functions, when the grid mesh size tends to zero and at the same time the observation horizon tends to infinity (high-frequency observations). A simulation study shows that the estimator performs well at finite sample sizes, when the integrator measure of the moving average random function is $$S\alpha S$$ S α S and for some other infinitely divisible integrators.

Suggested Citation

  • Jürgen Kampf & Georgiy Shevchenko & Evgeny Spodarev, 2021. "Nonparametric estimation of the kernel function of symmetric stable moving average random functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(2), pages 337-367, April.
  • Handle: RePEc:spr:aistmt:v:73:y:2021:i:2:d:10.1007_s10463-020-00751-6
    DOI: 10.1007/s10463-020-00751-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-020-00751-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-020-00751-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koblents, Eugenia & Míguez, Joaquín & Rodríguez, Marco A. & Schmidt, Alexandra M., 2016. "A nonlinear population Monte Carlo scheme for the Bayesian estimation of parameters of α-stable distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 57-74.
    2. Vicky Fasen & Florian Fuchs, 2013. "Spectral estimates for high-frequency sampled continuous-time autoregressive moving average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 532-551, September.
    3. Joanna Janczura & Sebastian Orzel & Agnieszka Wylomanska, 2011. "Subordinated alpha-stable Ornstein-Uhlenbeck process as a tool for financial data description," HSC Research Reports HSC/11/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    4. Müller, Gernot & Seibert, Armin, 2019. "Bayesian estimation of stable CARMA spot models for electricity prices," Energy Economics, Elsevier, vol. 78(C), pages 267-277.
    5. Peter J. Brockwell & Vincenzo Ferrazzano & Claudia Klüppelberg, 2013. "High-frequency sampling and kernel estimation for continuous-time moving average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 385-404, May.
    6. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sikora, Grzegorz & Michalak, Anna & Bielak, Łukasz & Miśta, Paweł & Wyłomańska, Agnieszka, 2019. "Stochastic modeling of currency exchange rates with novel validation techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1202-1215.
    2. Pham, Viet Son, 2020. "Lévy-driven causal CARMA random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7547-7574.
    3. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    4. Vicky Fasen-Hartmann & Celeste Mayer, 2022. "Whittle estimation for continuous-time stationary state space models with finite second moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 233-270, April.
    5. Reiichiro Kawai, 2017. "Sample Path Generation of Lévy-Driven Continuous-Time Autoregressive Moving Average Processes," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 175-211, March.
    6. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    7. Vicky Fasen & Florian Fuchs, 2013. "Spectral estimates for high-frequency sampled continuous-time autoregressive moving average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 532-551, September.
    8. Peter J. Brockwell & Yasumasa Matsuda, 2015. "Levy-driven CARMA Random Fields on Rn," TERG Discussion Papers 339, Graduate School of Economics and Management, Tohoku University.
    9. Péter Kevei, 2018. "Asymptotic moving average representation of high-frequency sampled multivariate CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 467-487, April.
    10. Ole E. Barndorff-Nielsen & Orimar Sauri & Benedykt Szozda, 2017. "Selfdecomposable Fields," Journal of Theoretical Probability, Springer, vol. 30(1), pages 233-267, March.
    11. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    12. Eugenia Koblents & Inés P. Mariño & Joaquín Míguez, 2019. "Bayesian Computation Methods for Inference in Stochastic Kinetic Models," Complexity, Hindawi, vol. 2019, pages 1-15, January.
    13. Li, Wei & Paraschiv, Florentina, 2022. "Modelling the evolution of wind and solar power infeed forecasts," Journal of Commodity Markets, Elsevier, vol. 25(C).
    14. Sauri, Orimar & Veraart, Almut E.D., 2017. "On the class of distributions of subordinated Lévy processes and bases," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 475-496.
    15. Bai, Shuyang & Ginovyan, Mamikon S. & Taqqu, Murad S., 2016. "Limit theorems for quadratic forms of Lévy-driven continuous-time linear processes," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1036-1065.
    16. Fabienne Comte & Valentine Genon-Catalot, 2021. "Nonparametric estimation for i.i.d. Gaussian continuous time moving average models," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 149-177, April.
    17. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    18. Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
    19. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    20. Szarek, Dawid & Bielak, Łukasz & Wyłomańska, Agnieszka, 2020. "Long-term prediction of the metals’ prices using non-Gaussian time-inhomogeneous stochastic process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:73:y:2021:i:2:d:10.1007_s10463-020-00751-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.