IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v189y2015i2p263-271.html
   My bibliography  Save this article

Prediction of Lévy-driven CARMA processes

Author

Listed:
  • Brockwell, Peter J.
  • Lindner, Alexander

Abstract

The conditional expectations, E(Y(h)|Y(u),−∞0 and 0

Suggested Citation

  • Brockwell, Peter J. & Lindner, Alexander, 2015. "Prediction of Lévy-driven CARMA processes," Journal of Econometrics, Elsevier, vol. 189(2), pages 263-271.
  • Handle: RePEc:eee:econom:v:189:y:2015:i:2:p:263-271
    DOI: 10.1016/j.jeconom.2015.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407615000998
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2015.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wolfe, Stephen James, 1982. "On a continuous analogue of the stochastic difference equation Xn=[rho]Xn-1+Bn," Stochastic Processes and their Applications, Elsevier, vol. 12(3), pages 301-312, May.
    2. Brockwell, Peter J. & Lindner, Alexander, 2009. "Existence and uniqueness of stationary Lévy-driven CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2660-2681, August.
    3. Peter J. Brockwell & Vincenzo Ferrazzano & Claudia Klüppelberg, 2012. "High‐frequency sampling of a continuous‐time ARMA process," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 152-160, January.
    4. Sato, Ken-iti & Yamazato, Makoto, 1984. "Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type," Stochastic Processes and their Applications, Elsevier, vol. 17(1), pages 73-100, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling, Shiqing & McAleer, Michael & Tong, Howell, 2015. "Frontiers in Time Series and Financial Econometrics: An overview," Journal of Econometrics, Elsevier, vol. 189(2), pages 245-250.
    2. Basse-O’Connor, Andreas & Nielsen, Mikkel Slot & Pedersen, Jan & Rohde, Victor, 2019. "Multivariate stochastic delay differential equations and CAR representations of CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4119-4143.
    3. Brockwell, Peter J. & Lindner, Alexander, 2015. "CARMA processes as solutions of integral equations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 221-227.
    4. Peter J. Brockwell & Alexander Lindner, 2021. "Aspects of non‐causal and non‐invertible CARMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 777-790, September.
    5. Ling, S. & McAleer, M.J. & Tong, H., 2015. "Frontiers in Time Series and Financial Econometrics," Econometric Institute Research Papers EI 2015-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maejima, Makoto & Ueda, Yohei, 2010. "[alpha]-selfdecomposable distributions and related Ornstein-Uhlenbeck type processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2363-2389, December.
    2. Fasen, Vicky & Fuchs, Florian, 2013. "On the limit behavior of the periodogram of high-frequency sampled stable CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 229-273.
    3. Zheng, Jing & Lin, Zhengyan & Tong, Changqing, 2009. "The Hausdorff dimension of the range for the Markov processes of Ornstein–Uhlenbeck type," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2008-2013.
    4. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
    5. Vicky Fasen & Florian Fuchs, 2013. "Spectral estimates for high-frequency sampled continuous-time autoregressive moving average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 532-551, September.
    6. Michael A. Thornton & Marcus J. Chambers, 2013. "Continuous-time autoregressive moving average processes in discrete time: representation and embeddability," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 552-561, September.
    7. Peter J. Brockwell & Yasumasa Matsuda, 2015. "Levy-driven CARMA Random Fields on Rn," TERG Discussion Papers 339, Graduate School of Economics and Management, Tohoku University.
    8. Jan-Frederik Mai & Steffen Schenk & Matthias Scherer, 2017. "Two Novel Characterizations of Self-Decomposability on the Half-Line," Journal of Theoretical Probability, Springer, vol. 30(1), pages 365-383, March.
    9. Péter Kevei, 2018. "Asymptotic moving average representation of high-frequency sampled multivariate CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 467-487, April.
    10. Pham, Viet Son, 2020. "Lévy-driven causal CARMA random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7547-7574.
    11. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    12. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    13. T. Ogihara & N. Yoshida, 2011. "Quasi-likelihood analysis for the stochastic differential equation with jumps," Statistical Inference for Stochastic Processes, Springer, vol. 14(3), pages 189-229, October.
    14. Barndorff-Nielsen, Ole E. & Maejima, Makoto, 2008. "Semigroups of Upsilon transformations," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2334-2343, December.
    15. Arturo Kohatsu & Makoto Yamazato, 2003. "On moments and tail behaviors of storage processes," Economics Working Papers 673, Department of Economics and Business, Universitat Pompeu Fabra.
    16. Brockwell, Peter J. & Lindner, Alexander, 2009. "Existence and uniqueness of stationary Lévy-driven CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2660-2681, August.
    17. Möhle, Martin & Vetter, Benedict, 2023. "Scaling limits for a class of regular Ξ-coalescents," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 387-422.
    18. Spangenberg, Felix, 2013. "Strictly stationary solutions of ARMA equations in Banach spaces," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 127-138.
    19. Valentin Courgeau & Almut E. D. Veraart, 2022. "Likelihood theory for the graph Ornstein-Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 227-260, July.
    20. Duhalde, Xan & Foucart, Clément & Ma, Chunhua, 2014. "On the hitting times of continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4182-4201.

    More about this item

    Keywords

    Prediction; Lévy process; CARMA process; Continuous time;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:189:y:2015:i:2:p:263-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.