IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v41y2020i6p858-882.html
   My bibliography  Save this article

Functional lagged regression with sparse noisy observations

Author

Listed:
  • Tomáš Rubín
  • Victor M. Panaretos

Abstract

A functional (lagged) time series regression model involves the regression of scalar response time series on a time series of regressors that consists of a sequence of random functions. In practice, the underlying regressor curve time series are not always directly accessible, but are latent processes observed (sampled) only at discrete measurement locations. In this article, we consider the so‐called sparse observation scenario where only a relatively small number of measurement locations have been observed, possibly different for each curve. The measurements can be further contaminated by additive measurement error. A spectral approach to the estimation of the model dynamics is considered. The spectral density of the regressor time series and the cross‐spectral density between the regressors and response time series are estimated by kernel smoothing methods from the sparse observations. The impulse response regression coefficients of the lagged regression model are then estimated by means of ridge regression (Tikhonov regularization) or principal component analysis (PCA) regression (spectral truncation). The latent functional time series are then recovered by means of prediction, conditioning on all the observed data. The performance and implementation of our methods are illustrated by means of a simulation study and the analysis of meteorological data.

Suggested Citation

  • Tomáš Rubín & Victor M. Panaretos, 2020. "Functional lagged regression with sparse noisy observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 858-882, November.
  • Handle: RePEc:bla:jtsera:v:41:y:2020:i:6:p:858-882
    DOI: 10.1111/jtsa.12551
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12551
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fang Yao & Hans-Georg Müller & Andrew J. Clifford & Steven R. Dueker & Jennifer Follett & Yumei Lin & Bruce A. Buchholz & John S. Vogel, 2003. "Shrinkage Estimation for Functional Principal Component Scores with Application to the Population Kinetics of Plasma Folate," Biometrics, The International Biometric Society, vol. 59(3), pages 676-685, September.
    2. Shahin Tavakoli & Victor M. Panaretos, 2016. "Detecting and Localizing Differences in Functional Time Series Dynamics: A Case Study in Molecular Biophysics," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1020-1035, July.
    3. Müller, Hans-Georg & Sen, Rituparna & Stadtmüller, Ulrich, 2011. "Functional data analysis for volatility," Journal of Econometrics, Elsevier, vol. 165(2), pages 233-245.
    4. Klepsch, J. & Klüppelberg, C. & Wei, T., 2017. "Prediction of functional ARMA processes with an application to traffic data," Econometrics and Statistics, Elsevier, vol. 1(C), pages 128-149.
    5. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    6. Siegfried Hörmann & Łukasz Kidziński & Piotr Kokoszka, 2015. "Estimation in Functional Lagged Regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(4), pages 541-561, July.
    7. Alexander Aue & Diogo Dubart Norinho & Siegfried Hörmann, 2015. "On the Prediction of Stationary Functional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 378-392, March.
    8. Siegfried Hörmann & Łukasz Kidziński & Marc Hallin, 2015. "Dynamic functional principal components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 319-348, March.
    9. Daniel R. Kowal & David S. Matteson & David Ruppert, 2017. "A Bayesian Multivariate Functional Dynamic Linear Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 733-744, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Vochozka & Andrea Bláhová & Zuzana Rowland, 2022. "Is Platinum a Real Store of Wealth?," IJFS, MDPI, vol. 10(3), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Jinyuan & Chen, Cheng & Qiao, Xinghao & Yao, Qiwei, 2023. "An autocovariance-based learning framework for high-dimensional functional time series," LSE Research Online Documents on Economics 117910, London School of Economics and Political Science, LSE Library.
    2. Luke Durell & J. Thad Scott & Douglas Nychka & Amanda S. Hering, 2023. "Functional forecasting of dissolved oxygen in high‐frequency vertical lake profiles," Environmetrics, John Wiley & Sons, Ltd., vol. 34(4), June.
    3. Sven Otto & Nazarii Salish, 2022. "Approximate Factor Models for Functional Time Series," Papers 2201.02532, arXiv.org, revised May 2024.
    4. Han Lin Shang & Yang Yang & Fearghal Kearney, 2019. "Intraday forecasts of a volatility index: functional time series methods with dynamic updating," Annals of Operations Research, Springer, vol. 282(1), pages 331-354, November.
    5. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    6. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
    7. Han Lin Shang & Yang Yang, 2021. "Forecasting Australian subnational age-specific mortality rates," Journal of Population Research, Springer, vol. 38(1), pages 1-24, March.
    8. Yang, Yang & Shang, Han Lin & Raymer, James, 2024. "Forecasting Australian fertility by age, region, and birthplace," International Journal of Forecasting, Elsevier, vol. 40(2), pages 532-548.
    9. Gao, Yuan & Shang, Han Lin & Yang, Yanrong, 2019. "High-dimensional functional time series forecasting: An application to age-specific mortality rates," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 232-243.
    10. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Post-Print halshs-01821815, HAL.
    11. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01821815, HAL.
    12. Yang, Yang & Yang, Yanrong & Shang, Han Lin, 2022. "Feature extraction for functional time series: Theory and application to NIR spectroscopy data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Holger Fink & Andreas Fuest & Henry Port, 2018. "The Impact of Sovereign Yield Curve Differentials on Value-at-Risk Forecasts for Foreign Exchange Rates," Risks, MDPI, vol. 6(3), pages 1-19, August.
    14. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    15. Matteo Iacopini & Dominique Guégan, 2018. "Nonparametric Forecasting of Multivariate Probability Density Functions," Working Papers 2018:15, Department of Economics, University of Venice "Ca' Foscari".
    16. Shang, Han Lin, 2017. "Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration," Econometrics and Statistics, Elsevier, vol. 1(C), pages 184-200.
    17. Şentürk, Damla & Ghosh, Samiran & Nguyen, Danh V., 2014. "Exploratory time varying lagged regression: Modeling association of cognitive and functional trajectories with expected clinic visits in older adults," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 1-15.
    18. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    19. Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    20. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:41:y:2020:i:6:p:858-882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.