IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i8p2660-2681.html
   My bibliography  Save this article

Existence and uniqueness of stationary Lévy-driven CARMA processes

Author

Listed:
  • Brockwell, Peter J.
  • Lindner, Alexander

Abstract

Necessary and sufficient conditions for the existence of a strictly stationary solution of the equations defining a general Lévy-driven continuous-parameter ARMA process with index set are determined. Under these conditions the solution is shown to be unique and an explicit expression is given for the process as an integral with respect to the background driving Lévy process. The results generalize results obtained earlier for second-order processes and for processes defined by the Ornstein-Uhlenbeck equation.

Suggested Citation

  • Brockwell, Peter J. & Lindner, Alexander, 2009. "Existence and uniqueness of stationary Lévy-driven CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2660-2681, August.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:8:p:2660-2681
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00029-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Brockwell, 2001. "Lévy-Driven Carma Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 113-124, March.
    2. Sato, Ken-iti & Yamazato, Makoto, 1984. "Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type," Stochastic Processes and their Applications, Elsevier, vol. 17(1), pages 73-100, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pham, Viet Son, 2020. "Lévy-driven causal CARMA random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7547-7574.
    2. Appleby, John A.D. & Patterson, Denis D., 2021. "Growth and fluctuation in perturbed nonlinear Volterra equations," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    3. Brockwell, Peter J. & Lindner, Alexander, 2015. "CARMA processes as solutions of integral equations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 221-227.
    4. Benth, Fred Espen & Taib, Che Mohd Imran Che, 2013. "On the speed towards the mean for continuous time autoregressive moving average processes with applications to energy markets," Energy Economics, Elsevier, vol. 40(C), pages 259-268.
    5. Florian Fuchs & Robert Stelzer, 2013. "Spectral Representation of Multivariate Regularly Varying Lévy and CARMA Processes," Journal of Theoretical Probability, Springer, vol. 26(2), pages 410-436, June.
    6. Fasen, Vicky & Fuchs, Florian, 2013. "On the limit behavior of the periodogram of high-frequency sampled stable CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 229-273.
    7. Ernst, Philip A. & Brown, Lawrence D. & Shepp, Larry & Wolpert, Robert L., 2017. "Stationary Gaussian Markov processes as limits of stationary autoregressive time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 180-186.
    8. Brockwell, Peter J. & Lindner, Alexander, 2015. "Prediction of Lévy-driven CARMA processes," Journal of Econometrics, Elsevier, vol. 189(2), pages 263-271.
    9. Spangenberg, Felix, 2013. "Strictly stationary solutions of ARMA equations in Banach spaces," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 127-138.
    10. Berger, David, 2020. "Lévy driven CARMA generalized processes and stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 5865-5887.
    11. Brockwell, Peter J. & Schlemm, Eckhard, 2013. "Parametric estimation of the driving Lévy process of multivariate CARMA processes from discrete observations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 217-251.
    12. Wang, Fangfang & Ma, Chunsheng, 2019. "ℓ1-symmetric vector random fields," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2466-2484.
    13. Peter J. Brockwell & Yasumasa Matsuda, 2015. "Levy-driven CARMA Random Fields on Rn," TERG Discussion Papers 339, Graduate School of Economics and Management, Tohoku University.
    14. Peter J. Brockwell & Yasumasa Matsuda, 2017. "Continuous auto-regressive moving average random fields on ℝ-super-n," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 833-857, June.
    15. Ragnhild Noven & Almut Veraart & Axel Gandy, 2015. "A Lévy-driven rainfall model with applications to futures pricing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 403-432, October.
    16. Benth, Fred Espen & Klüppelberg, Claudia & Müller, Gernot & Vos, Linda, 2014. "Futures pricing in electricity markets based on stable CARMA spot models," Energy Economics, Elsevier, vol. 44(C), pages 392-406.
    17. Vicky Fasen & Florian Fuchs, 2013. "Spectral estimates for high-frequency sampled continuous-time autoregressive moving average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 532-551, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    2. Marquardt, Tina & Stelzer, Robert, 2007. "Multivariate CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 96-120, January.
    3. Maejima, Makoto & Ueda, Yohei, 2010. "[alpha]-selfdecomposable distributions and related Ornstein-Uhlenbeck type processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2363-2389, December.
    4. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
    5. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    6. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    7. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    8. T. Ogihara & N. Yoshida, 2011. "Quasi-likelihood analysis for the stochastic differential equation with jumps," Statistical Inference for Stochastic Processes, Springer, vol. 14(3), pages 189-229, October.
    9. Möhle, Martin & Vetter, Benedict, 2023. "Scaling limits for a class of regular Ξ-coalescents," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 387-422.
    10. Davis, Richard A. & Mikosch, Thomas, 2008. "Extreme value theory for space-time processes with heavy-tailed distributions," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 560-584, April.
    11. Duhalde, Xan & Foucart, Clément & Ma, Chunhua, 2014. "On the hitting times of continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4182-4201.
    12. Keller-Ressel, Martin & Mijatović, Aleksandar, 2012. "On the limit distributions of continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2329-2345.
    13. Marquardt, Tina, 2007. "Multivariate fractionally integrated CARMA processes," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1705-1725, October.
    14. Fred Espen Benth & Heidar Eyjolfsson, 2015. "Representation and approximation of ambit fields in Hilbert space," Papers 1509.08272, arXiv.org.
    15. Anita Behme & Alexander Lindner, 2015. "On Exponential Functionals of Lévy Processes," Journal of Theoretical Probability, Springer, vol. 28(2), pages 681-720, June.
    16. Brockwell, Peter J. & Lindner, Alexander, 2015. "CARMA processes as solutions of integral equations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 221-227.
    17. Tucker McElroy, 2013. "Forecasting continuous-time processes with applications to signal extraction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 439-456, June.
    18. Kulik, Alexey M., 2011. "Asymptotic and spectral properties of exponentially [phi]-ergodic Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1044-1075, May.
    19. Fasen, Vicky & Fuchs, Florian, 2013. "On the limit behavior of the periodogram of high-frequency sampled stable CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 229-273.
    20. Florian Fuchs & Robert Stelzer, 2013. "Spectral Representation of Multivariate Regularly Varying Lévy and CARMA Processes," Journal of Theoretical Probability, Springer, vol. 26(2), pages 410-436, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:8:p:2660-2681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.