IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v26y2013i2d10.1007_s10959-011-0369-0.html
   My bibliography  Save this article

Spectral Representation of Multivariate Regularly Varying Lévy and CARMA Processes

Author

Listed:
  • Florian Fuchs

    (Technische Universität München)

  • Robert Stelzer

    (Ulm University)

Abstract

A spectral representation for regularly varying Lévy processes with index between one and two is established and the properties of the resulting random noise are discussed in detail, giving also new insight in the L 2-case where the noise is a random orthogonal measure. This allows a spectral definition of multivariate regularly varying Lévy-driven continuous time autoregressive moving average (CARMA) processes. It is shown that they extend the well-studied case with finite second moments and coincide with definitions previously used in the infinite variance case when they apply.

Suggested Citation

  • Florian Fuchs & Robert Stelzer, 2013. "Spectral Representation of Multivariate Regularly Varying Lévy and CARMA Processes," Journal of Theoretical Probability, Springer, vol. 26(2), pages 410-436, June.
  • Handle: RePEc:spr:jotpro:v:26:y:2013:i:2:d:10.1007_s10959-011-0369-0
    DOI: 10.1007/s10959-011-0369-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-011-0369-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-011-0369-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brockwell, Peter J. & Lindner, Alexander, 2009. "Existence and uniqueness of stationary Lévy-driven CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2660-2681, August.
    2. P. Brockwell, 2001. "Lévy-Driven Carma Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 113-124, March.
    3. Marquardt, Tina & Stelzer, Robert, 2007. "Multivariate CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 96-120, January.
    4. Marquardt, Tina, 2007. "Multivariate fractionally integrated CARMA processes," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1705-1725, October.
    5. Todorov, Viktor & Tauchen, George, 2006. "Simulation Methods for Levy-Driven Continuous-Time Autoregressive Moving Average (CARMA) Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 455-469, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brockwell, Peter J. & Schlemm, Eckhard, 2013. "Parametric estimation of the driving Lévy process of multivariate CARMA processes from discrete observations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 217-251.
    2. Péter Kevei, 2018. "Asymptotic moving average representation of high-frequency sampled multivariate CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 467-487, April.
    3. Fasen, Vicky & Fuchs, Florian, 2013. "On the limit behavior of the periodogram of high-frequency sampled stable CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 229-273.
    4. Basse-O’Connor, Andreas & Nielsen, Mikkel Slot & Pedersen, Jan & Rohde, Victor, 2019. "Multivariate stochastic delay differential equations and CAR representations of CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4119-4143.
    5. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    6. Appleby, John A.D. & Patterson, Denis D., 2021. "Growth and fluctuation in perturbed nonlinear Volterra equations," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    7. Benth, Fred Espen & Karbach, Sven, 2023. "Multivariate continuous-time autoregressive moving-average processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 299-337.
    8. Fasen-Hartmann, Vicky & Mayer, Celeste, 2023. "Empirical spectral processes for stationary state space models," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 319-354.
    9. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    10. Pham, Viet Son, 2020. "Lévy-driven causal CARMA random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7547-7574.
    11. Holger Fink, 2016. "Conditional Distributions of Mandelbrot–van ness Fractional LÉVY Processes and Continuous-Time ARMA–GARCH-Type Models with Long Memory," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 30-45, January.
    12. Behme, Anita & Chong, Carsten & Klüppelberg, Claudia, 2015. "Superposition of COGARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1426-1469.
    13. Nielsen, Mikkel Slot, 2020. "On non-stationary solutions to MSDDEs: Representations and the cointegration space," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3154-3173.
    14. Brockwell, Peter J. & Lindner, Alexander, 2015. "CARMA processes as solutions of integral equations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 221-227.
    15. Vicky Fasen-Hartmann & Celeste Mayer, 2022. "Whittle estimation for continuous-time stationary state space models with finite second moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 233-270, April.
    16. Benth, Fred Espen & Taib, Che Mohd Imran Che, 2013. "On the speed towards the mean for continuous time autoregressive moving average processes with applications to energy markets," Energy Economics, Elsevier, vol. 40(C), pages 259-268.
    17. Todorov, Viktor, 2009. "Estimation of continuous-time stochastic volatility models with jumps using high-frequency data," Journal of Econometrics, Elsevier, vol. 148(2), pages 131-148, February.
    18. Ragnhild Noven & Almut Veraart & Axel Gandy, 2015. "A Lévy-driven rainfall model with applications to futures pricing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 403-432, October.
    19. Stefano Iacus & Lorenzo Mercuri, 2015. "Implementation of Lévy CARMA model in Yuima package," Computational Statistics, Springer, vol. 30(4), pages 1111-1141, December.
    20. Vicky Fasen, 2016. "Dependence Estimation for High-frequency Sampled Multivariate CARMA Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 292-320, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:26:y:2013:i:2:d:10.1007_s10959-011-0369-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.