IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v127y2017i8p2650-2678.html
   My bibliography  Save this article

Interacting generalized Friedman’s urn systems

Author

Listed:
  • Aletti, Giacomo
  • Ghiglietti, Andrea

Abstract

We consider systems of interacting Generalized Friedman’s Urns (GFUs) having irreducible mean replacement matrices. The interaction is modeled through the probability to sample the colors from each urn, that is defined as convex combination of the urn proportions in the system. From the weights of these combinations we individuate subsystems of urns evolving with different behaviors. We provide a complete description of the asymptotic properties of urn proportions in each subsystem by establishing limiting proportions, convergence rates and Central Limit Theorems. The main proofs are based on a detailed eigenanalysis and stochastic approximation techniques.

Suggested Citation

  • Aletti, Giacomo & Ghiglietti, Andrea, 2017. "Interacting generalized Friedman’s urn systems," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2650-2678.
  • Handle: RePEc:eee:spapps:v:127:y:2017:i:8:p:2650-2678
    DOI: 10.1016/j.spa.2016.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916302204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Z. D. & Hu, Feifang, 1999. "Asymptotic theorems for urn models with nonhomogeneous generating matrices," Stochastic Processes and their Applications, Elsevier, vol. 80(1), pages 87-101, March.
    2. Smythe, R. T., 1996. "Central limit theorems for urn models," Stochastic Processes and their Applications, Elsevier, vol. 65(1), pages 115-137, December.
    3. Crimaldi, Irene & Dai Pra, Paolo & Minelli, Ida Germana, 2016. "Fluctuation theorems for synchronization of interacting Pólya’s urns," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 930-947.
    4. M. Marsili & A. Valleriani, 1998. "Self organization of interacting polya urns," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(4), pages 417-420, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
    2. Irene Crimaldi & Pierre-Yves Louis & Ida Minelli, 2020. "Interacting non-linear reinforced stochastic processes: Synchronization and no-synchronization," Working Papers hal-02910341, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
    2. Janson, Svante, 2004. "Functional limit theorems for multitype branching processes and generalized Pólya urns," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 177-245, April.
    3. Bai, Z. D. & Hu, Feifang & Shen, Liang, 2002. "An Adaptive Design for Multi-Arm Clinical Trials," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 1-18, April.
    4. Li-Xin, Zhang, 2006. "Asymptotic results on a class of adaptive multi-treatment designs," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 586-605, March.
    5. Davidson, Allison & D. Ward, Mark, 2018. "The characterization of tenable Pólya urns," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 38-43.
    6. Bai, Z. D. & Hu, Feifang, 1999. "Asymptotic theorems for urn models with nonhomogeneous generating matrices," Stochastic Processes and their Applications, Elsevier, vol. 80(1), pages 87-101, March.
    7. Feng, Yarong & Mahmoud, Hosam M., 2021. "Dynamic Pólya–Eggenberger urns," Statistics & Probability Letters, Elsevier, vol. 174(C).
    8. Soumaya Idriss, 2022. "Nonlinear Unbalanced Urn Models via Stochastic Approximation," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 413-430, March.
    9. Crimaldi, Irene & Louis, Pierre-Yves & Minelli, Ida G., 2022. "An urn model with random multiple drawing and random addition," Stochastic Processes and their Applications, Elsevier, vol. 147(C), pages 270-299.
    10. Crimaldi, Irene & Louis, Pierre-Yves & Minelli, Ida G., 2023. "Statistical test for an urn model with random multidrawing and random addition," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 342-360.
    11. Matthews, Peter C. & Rosenberger, William F., 1997. "Variance in randomized play-the-winner clinical trials," Statistics & Probability Letters, Elsevier, vol. 35(3), pages 233-240, October.
    12. Soumaya Idriss & Hosam Mahmoud, 2023. "Exact Covariances and Refined Asymptotics in Dichromatic Tenable Balanced Pólya Urn Schemes," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-16, June.
    13. Yanqing Yi & Yuan Yuan, 2013. "An optimal allocation for response-adaptive designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 1996-2008, September.
    14. Yang, Li & Hu, Jiang & Bai, Zhidong, 2024. "Revisit of a Diaconis urn model," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    15. Gopal K. Basak & Amites Dasgupta, 2006. "Central and Functional Central Limit Theorems for a Class of Urn Models," Journal of Theoretical Probability, Springer, vol. 19(3), pages 741-756, December.
    16. Yuan, Ao & Chai, Gen Xiang, 2008. "Optimal adaptive generalized Polya urn design for multi-arm clinical trials," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 1-24, January.
    17. Crimaldi, Irene & Dai Pra, Paolo & Minelli, Ida Germana, 2016. "Fluctuation theorems for synchronization of interacting Pólya’s urns," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 930-947.
    18. Emilien Macault, 2022. "Stochastic Consensus and the Shadow of Doubt," Papers 2201.12100, arXiv.org.
    19. Dasgupta, Amites, 2024. "Azuma-Hoeffding bounds for a class of urn models," Statistics & Probability Letters, Elsevier, vol. 204(C).
    20. Yi, Yanqing & Wang, Xikui, 2007. "Goodness-of-fit test for response adaptive clinical trials," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 1014-1020, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:8:p:2650-2678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.