IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i1p70-101.html
   My bibliography  Save this article

Synchronization and functional central limit theorems for interacting reinforced random walks

Author

Listed:
  • Crimaldi, Irene
  • Dai Pra, Paolo
  • Louis, Pierre-Yves
  • Minelli, Ida G.

Abstract

We obtain Central Limit Theorems in Functional form for a class of time-inhomogeneous interacting random walks. Due to a reinforcement mechanism and interaction, the walks are strongly correlated and converge almost surely to the same, possibly random, limit. We study random walks interacting through a mean-field rule and compare the rate they converge to their limit with the rate of synchronization, i.e. the rate at which their mutual distances converge to zero. We show that, under certain conditions, synchronization is faster than convergence. Even if our focus is on theoretical results, we propose as main motivations two contexts in which such results could directly apply: urn models and opinion dynamics in a random network evolving via preferential attachment.

Suggested Citation

  • Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:1:p:70-101
    DOI: 10.1016/j.spa.2018.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918300292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janson, Svante, 2004. "Functional limit theorems for multitype branching processes and generalized Pólya urns," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 177-245, April.
    2. Pierluigi Contucci & Stefano Ghirlanda, 2007. "Modeling society with statistical mechanics: an application to cultural contact and immigration," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(4), pages 569-578, August.
    3. Aletti, Giacomo & Ghiglietti, Andrea, 2017. "Interacting generalized Friedman’s urn systems," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2650-2678.
    4. Alison L. Gibbs & Francis Edward Su, 2002. "On Choosing and Bounding Probability Metrics," International Statistical Review, International Statistical Institute, vol. 70(3), pages 419-435, December.
    5. Crimaldi, Irene & Dai Pra, Paolo & Minelli, Ida Germana, 2016. "Fluctuation theorems for synchronization of interacting Pólya’s urns," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 930-947.
    6. M. Marsili & A. Valleriani, 1998. "Self organization of interacting polya urns," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(4), pages 417-420, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan Hu & Abootaleb Shirvani & W. Brent Lindquist & Frank J. Fabozzi & Svetlozar T. Rachev, 2020. "Option Pricing Incorporating Factor Dynamics in Complete Markets," JRFM, MDPI, vol. 13(12), pages 1-33, December.
    2. Yuan Hu & Abootaleb Shirvani & W. Brent Lindquist & Frank J. Fabozzi & Svetlozar T. Rachev, 2020. "Option Pricing Incorporating Factor Dynamics in Complete Markets," Papers 2011.08343, arXiv.org.
    3. Irene Crimaldi & Pierre-Yves Louis & Ida Minelli, 2020. "Interacting non-linear reinforced stochastic processes: Synchronization and no-synchronization," Working Papers hal-02910341, HAL.
    4. Rosales, Rafael A. & Prado, Fernando P.A. & Pires, Benito, 2022. "Vertex reinforced random walks with exponential interaction on complete graphs," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 353-379.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aletti, Giacomo & Ghiglietti, Andrea, 2017. "Interacting generalized Friedman’s urn systems," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2650-2678.
    2. Crimaldi, Irene & Dai Pra, Paolo & Minelli, Ida Germana, 2016. "Fluctuation theorems for synchronization of interacting Pólya’s urns," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 930-947.
    3. Fenner, Trevor & Levene, Mark & Loizou, George, 2010. "Predicting the long tail of book sales: Unearthing the power-law exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2416-2421.
    4. Gerhold, Stefan & Gülüm, I. Cetin, 2019. "Peacocks nearby: Approximating sequences of measures," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2406-2436.
    5. Xuejun Zhao & Ruihao Zhu & William B. Haskell, 2022. "Learning to Price Supply Chain Contracts against a Learning Retailer," Papers 2211.04586, arXiv.org.
    6. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Marie Ernst & Yvik Swan, 2022. "Distances Between Distributions Via Stein’s Method," Journal of Theoretical Probability, Springer, vol. 35(2), pages 949-987, June.
    8. Leandro Nascimento, 2022. "Bounded arbitrage and nearly rational behavior," Papers 2212.02680, arXiv.org, revised Jul 2023.
    9. Giacomo Aletti & Caterina May & Piercesare Secchi, 2012. "A Functional Equation Whose Unknown is $\mathcal{P}([0,1])$ Valued," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1207-1232, December.
    10. Michael D Nicholson & Tibor Antal, 2019. "Competing evolutionary paths in growing populations with applications to multidrug resistance," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-25, April.
    11. José Moler & Fernando Plo & Henar Urmeneta, 2013. "A generalized Pólya urn and limit laws for the number of outputs in a family of random circuits," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 46-61, March.
    12. Patrick Marsh, 2019. "The role of information in nonstationary regression," Discussion Papers 19/04, University of Nottingham, Granger Centre for Time Series Econometrics.
    13. White, Staci A. & Herbei, Radu, 2015. "A Monte Carlo approach to quantifying model error in Bayesian parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 168-181.
    14. Laura Azzimonti & Francesca Ieva & Anna Maria Paganoni, 2013. "Nonlinear nonparametric mixed-effects models for unsupervised classification," Computational Statistics, Springer, vol. 28(4), pages 1549-1570, August.
    15. Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
    16. Hoang, Lê Nguyên & Soumis, François & Zaccour, Georges, 2019. "The return function: A new computable perspective on Bayesian–Nash equilibria," European Journal of Operational Research, Elsevier, vol. 279(2), pages 471-485.
    17. Stephan Eckstein & Gaoyue Guo & Tongseok Lim & Jan Obloj, 2019. "Robust pricing and hedging of options on multiple assets and its numerics," Papers 1909.03870, arXiv.org, revised Oct 2020.
    18. Mailler, Cécile & Marckert, Jean-François, 2022. "Parameterised branching processes: A functional version of Kesten & Stigum theorem," Stochastic Processes and their Applications, Elsevier, vol. 152(C), pages 339-377.
    19. Berrendero, José R. & Cuevas, Antonio & Pateiro-López, Beatriz, 2016. "Shape classification based on interpoint distance distributions," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 237-247.
    20. Irene Crimaldi & Pierre-Yves Louis & Ida Minelli, 2020. "Interacting non-linear reinforced stochastic processes: Synchronization and no-synchronization," Working Papers hal-02910341, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:1:p:70-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.