IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i1p1-24.html
   My bibliography  Save this article

Optimal adaptive generalized Polya urn design for multi-arm clinical trials

Author

Listed:
  • Yuan, Ao
  • Chai, Gen Xiang

Abstract

A class of optimal adaptive multi-arm clinical trial designs is proposed based on an extended generalized Polya urn (GPU) model. The design is applicable to both the qualitative and quantitative responses and achieves, asymptotically, some pre-specified optimality criterion. Such criterion is specified by a functional of the response distributions and is implemented through the relationship between the design matrix and its first eigenvector. The asymptotic properties of the design are studied using the existing methods on GPU. Some examples for commonly used clinical designs are given as illustration.

Suggested Citation

  • Yuan, Ao & Chai, Gen Xiang, 2008. "Optimal adaptive generalized Polya urn design for multi-arm clinical trials," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 1-24, January.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:1:p:1-24
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00213-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janson, Svante, 2004. "Functional limit theorems for multitype branching processes and generalized Pólya urns," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 177-245, April.
    2. Bai, Z. D. & Hu, Feifang, 1999. "Asymptotic theorems for urn models with nonhomogeneous generating matrices," Stochastic Processes and their Applications, Elsevier, vol. 80(1), pages 87-101, March.
    3. William F. Rosenberger & Nigel Stallard & Anastasia Ivanova & Cherice N. Harper & Michelle L. Ricks, 2001. "Optimal Adaptive Designs for Binary Response Trials," Biometrics, The International Biometric Society, vol. 57(3), pages 909-913, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanqing Yi & Yuan Yuan, 2013. "An optimal allocation for response-adaptive designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 1996-2008, September.
    2. Li-Xin, Zhang, 2006. "Asymptotic results on a class of adaptive multi-treatment designs," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 586-605, March.
    3. Uttam Bandyopadhyay & Atanu Biswas & Shirsendu Mukherjee, 2009. "Adaptive two-treatment two-period crossover design for binary treatment responses incorporating carry-over effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 13-33, March.
    4. Davidson, Allison & D. Ward, Mark, 2018. "The characterization of tenable Pólya urns," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 38-43.
    5. Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
    6. Biswas, Atanu & Bhattacharya, Rahul, 2010. "An optimal response-adaptive design with dual constraints," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 177-185, February.
    7. Michael D Nicholson & Tibor Antal, 2019. "Competing evolutionary paths in growing populations with applications to multidrug resistance," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-25, April.
    8. Soumaya Idriss, 2022. "Nonlinear Unbalanced Urn Models via Stochastic Approximation," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 413-430, March.
    9. José Moler & Fernando Plo & Henar Urmeneta, 2013. "A generalized Pólya urn and limit laws for the number of outputs in a family of random circuits," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 46-61, March.
    10. Mandal, Saumen & Biswas, Atanu & Trandafir, Paula Camelia & Islam Chowdhury, Mohammad Ziaul, 2013. "Optimal target allocation proportion for correlated binary responses in a 2×2 setup," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 1991-1997.
    11. Mailler, Cécile & Marckert, Jean-François, 2022. "Parameterised branching processes: A functional version of Kesten & Stigum theorem," Stochastic Processes and their Applications, Elsevier, vol. 152(C), pages 339-377.
    12. Kortchemski, Igor, 2015. "A predator–prey SIR type dynamics on large complete graphs with three phase transitions," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 886-917.
    13. Dimitris Cheliotis & Dimitra Kouloumpou, 2022. "Functional Limit Theorems for the Pólya Urn," Journal of Theoretical Probability, Springer, vol. 35(3), pages 2038-2051, September.
    14. Uttam Bandyopadhyay & Atanu Biswas, 2018. "Fixed-width confidence interval for covariate-adjusted response-adaptive designs," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 353-371, April.
    15. Kaj, Ingemar & Tahir, Daniah, 2019. "Stochastic equations and limit results for some two-type branching models," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 35-46.
    16. Patrizia Berti & Irene Crimaldi & Luca Pratelli & Pietro Rigo, 2009. "Central Limit Theorems For Multicolor Urns With Dominated Colors," Quaderni di Dipartimento 106, University of Pavia, Department of Economics and Quantitative Methods.
    17. Sofía S. Villar & William F. Rosenberger, 2018. "Covariate†adjusted response†adaptive randomization for multi†arm clinical trials using a modified forward looking Gittins index rule," Biometrics, The International Biometric Society, vol. 74(1), pages 49-57, March.
    18. Chambaz Antoine & van der Laan Mark J., 2011. "Targeting the Optimal Design in Randomized Clinical Trials with Binary Outcomes and No Covariate: Simulation Study," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-30, January.
    19. Anupam Kundu & Nabaneet Das & Sayantan Chakraborty & Subir Kumar Bhandari, 2017. "Optimal Test Statistics for Minimising not Cured Proportion in Adaptive Clinical Trial," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 156-169, May.
    20. Yi, Yanqing, 2013. "Exact statistical power for response adaptive designs," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 201-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:1:p:1-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.