An Adaptive Design for Multi-Arm Clinical Trials
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Smythe, R. T., 1996. "Central limit theorems for urn models," Stochastic Processes and their Applications, Elsevier, vol. 65(1), pages 115-137, December.
- Bai, Z. D. & Hu, Feifang, 1999. "Asymptotic theorems for urn models with nonhomogeneous generating matrices," Stochastic Processes and their Applications, Elsevier, vol. 80(1), pages 87-101, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Soumaya Idriss, 2022. "Nonlinear Unbalanced Urn Models via Stochastic Approximation," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 413-430, March.
- Bélisle, Claude & Melfi, Vince, 2008. "Independence after adaptive allocation," Statistics & Probability Letters, Elsevier, vol. 78(3), pages 214-224, February.
- Yang, Li & Hu, Jiang & Bai, Zhidong, 2024. "Revisit of a Diaconis urn model," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
- Moler, José A. & Plo, Fernando & San Miguel, Miguel, 2006. "An adaptive design for clinical trials with non-dichotomous response and prognostic factors," Statistics & Probability Letters, Elsevier, vol. 76(17), pages 1940-1946, November.
- Li-Xin, Zhang, 2006. "Asymptotic results on a class of adaptive multi-treatment designs," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 586-605, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Janson, Svante, 2004. "Functional limit theorems for multitype branching processes and generalized Pólya urns," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 177-245, April.
- Aletti, Giacomo & Ghiglietti, Andrea, 2017. "Interacting generalized Friedman’s urn systems," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2650-2678.
- Li-Xin, Zhang, 2006. "Asymptotic results on a class of adaptive multi-treatment designs," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 586-605, March.
- Davidson, Allison & D. Ward, Mark, 2018. "The characterization of tenable Pólya urns," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 38-43.
- Bai, Z. D. & Hu, Feifang, 1999. "Asymptotic theorems for urn models with nonhomogeneous generating matrices," Stochastic Processes and their Applications, Elsevier, vol. 80(1), pages 87-101, March.
- Feng, Yarong & Mahmoud, Hosam M., 2021. "Dynamic Pólya–Eggenberger urns," Statistics & Probability Letters, Elsevier, vol. 174(C).
- Soumaya Idriss, 2022. "Nonlinear Unbalanced Urn Models via Stochastic Approximation," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 413-430, March.
- Matthews, Peter C. & Rosenberger, William F., 1997. "Variance in randomized play-the-winner clinical trials," Statistics & Probability Letters, Elsevier, vol. 35(3), pages 233-240, October.
- Soumaya Idriss & Hosam Mahmoud, 2023. "Exact Covariances and Refined Asymptotics in Dichromatic Tenable Balanced Pólya Urn Schemes," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-16, June.
- Yanqing Yi & Yuan Yuan, 2013. "An optimal allocation for response-adaptive designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 1996-2008, September.
- Yang, Li & Hu, Jiang & Bai, Zhidong, 2024. "Revisit of a Diaconis urn model," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
- Gopal K. Basak & Amites Dasgupta, 2006. "Central and Functional Central Limit Theorems for a Class of Urn Models," Journal of Theoretical Probability, Springer, vol. 19(3), pages 741-756, December.
- Yuan, Ao & Chai, Gen Xiang, 2008. "Optimal adaptive generalized Polya urn design for multi-arm clinical trials," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 1-24, January.
- Dasgupta, Amites, 2024. "Azuma-Hoeffding bounds for a class of urn models," Statistics & Probability Letters, Elsevier, vol. 204(C).
- Yi, Yanqing & Wang, Xikui, 2007. "Goodness-of-fit test for response adaptive clinical trials," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 1014-1020, June.
- Kotz, Samuel & Mahmoud, Hosam & Robert, Philippe, 2000. "On generalized Pólya urn models," Statistics & Probability Letters, Elsevier, vol. 49(2), pages 163-173, August.
More about this item
Keywords
adaptive designs asymptotic limits clinical trial generalized Friedman's urn play-the winner;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:81:y:2002:i:1:p:1-18. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.