IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v126y2016i3p930-947.html
   My bibliography  Save this article

Fluctuation theorems for synchronization of interacting Pólya’s urns

Author

Listed:
  • Crimaldi, Irene
  • Dai Pra, Paolo
  • Minelli, Ida Germana

Abstract

We consider a system of N two-colors urns in which the reinforcement of each urn depends also on the content of all the other urns. This interaction is of mean-field type and it is tuned by a parameter α∈[0,1]; in particular, for α=0 the N urns behave as N independent Pólya’s urns. For α>0 urns synchronize, in the sense that the fraction of balls of a given color converges a.s. to the same (random) limit in all urns. In this paper we study fluctuations around this synchronized regime. The scaling of these fluctuations depends on the parameter α. In particular the standard scaling t−1/2 appears only for α>1/2. For α≥1/2 we also determine the limit distribution of the rescaled fluctuations. We use the notion of stable convergence, which is stronger than convergence in distribution.

Suggested Citation

  • Crimaldi, Irene & Dai Pra, Paolo & Minelli, Ida Germana, 2016. "Fluctuation theorems for synchronization of interacting Pólya’s urns," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 930-947.
  • Handle: RePEc:eee:spapps:v:126:y:2016:i:3:p:930-947
    DOI: 10.1016/j.spa.2015.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414915002537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2015.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Marsili & A. Valleriani, 1998. "Self organization of interacting polya urns," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(4), pages 417-420, June.
    2. Feigin, Paul D., 1985. "Stable convergence of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 19(1), pages 125-134, February.
    3. Berti, Patrizia & Crimaldi, Irene & Pratelli, Luca & Rigo, Pietro, 2010. "Central limit theorems for multicolor urns with dominated colors," Stochastic Processes and their Applications, Elsevier, vol. 120(8), pages 1473-1491, August.
    4. Alison L. Gibbs & Francis Edward Su, 2002. "On Choosing and Bounding Probability Metrics," International Statistical Review, International Statistical Institute, vol. 70(3), pages 419-435, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emilien Macault, 2022. "Stochastic Consensus and the Shadow of Doubt," Papers 2201.12100, arXiv.org.
    2. Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
    3. Aletti, Giacomo & Ghiglietti, Andrea, 2017. "Interacting generalized Friedman’s urn systems," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2650-2678.
    4. Crimaldi, Irene & Louis, Pierre-Yves & Minelli, Ida G., 2022. "An urn model with random multiple drawing and random addition," Stochastic Processes and their Applications, Elsevier, vol. 147(C), pages 270-299.
    5. Crimaldi, Irene & Louis, Pierre-Yves & Minelli, Ida G., 2023. "Statistical test for an urn model with random multidrawing and random addition," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 342-360.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
    2. Oyama, Daisuke & Tercieux, Olivier, 2012. "On the strategic impact of an event under non-common priors," Games and Economic Behavior, Elsevier, vol. 74(1), pages 321-331.
    3. Fabian R. Pieroth & Tuomas Sandholm, 2024. "Verifying Approximate Equilibrium in Auctions," Papers 2408.11445, arXiv.org.
    4. Fenner, Trevor & Levene, Mark & Loizou, George, 2010. "Predicting the long tail of book sales: Unearthing the power-law exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2416-2421.
    5. Aletti, Giacomo & Ghiglietti, Andrea, 2017. "Interacting generalized Friedman’s urn systems," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2650-2678.
    6. Takashi Kamihigashi & John Stachurski, 2017. "Some Unified Results for Classical and Monotone Markov Chain Theory," Discussion Paper Series DP2017-02, Research Institute for Economics & Business Administration, Kobe University.
    7. Bertanha, Marinho & Moreira, Marcelo J., 2020. "Impossible inference in econometrics: Theory and applications," Journal of Econometrics, Elsevier, vol. 218(2), pages 247-270.
    8. HAEDO, Christian & MOUCHART, Michel, 2012. "A stochastic independence approach for different measures of concentration and specialization," LIDAM Discussion Papers CORE 2012025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Schneider, Judith C. & Schweizer, Nikolaus, 2015. "Robust measurement of (heavy-tailed) risks: Theory and implementation," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 183-203.
    10. Gerhold, Stefan & Gülüm, I. Cetin, 2019. "Peacocks nearby: Approximating sequences of measures," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2406-2436.
    11. Xuejun Zhao & Ruihao Zhu & William B. Haskell, 2022. "Learning to Price Supply Chain Contracts against a Learning Retailer," Papers 2211.04586, arXiv.org.
    12. Ana C. Gómez Ugarte Valerio & Ugofilippo Basellini & Carlo G. Camarda & Fanny Janssen & Emilio Zagheni, 2024. "Reassessing socioeconomic inequalities in mortality via distributional similarities," MPIDR Working Papers WP-2024-007, Max Planck Institute for Demographic Research, Rostock, Germany.
    13. Borgonovo, E. & Zentner, I. & Pellegri, A. & Tarantola, S. & de Rocquigny, E., 2013. "On the importance of uncertain factors in seismic fragility assessment," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 66-76.
    14. Gurdip Bakshi & Xiaohui Gao & George Panayotov, 2021. "A Theory of Dissimilarity Between Stochastic Discount Factors," Management Science, INFORMS, vol. 67(7), pages 4602-4622, July.
    15. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Leskelä, Lasse & Vihola, Matti, 2013. "Stochastic order characterization of uniform integrability and tightness," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 382-389.
    17. Marie Ernst & Yvik Swan, 2022. "Distances Between Distributions Via Stein’s Method," Journal of Theoretical Probability, Springer, vol. 35(2), pages 949-987, June.
    18. Francisco de A. T. Carvalho & Antonio Irpino & Rosanna Verde & Antonio Balzanella, 2022. "Batch Self-Organizing Maps for Distributional Data with an Automatic Weighting of Variables and Components," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 343-375, July.
    19. Giovanni Peccati & Murad S. Taqqu, 2008. "Stable Convergence of Multiple Wiener-Itô Integrals," Journal of Theoretical Probability, Springer, vol. 21(3), pages 527-570, September.
    20. Crimaldi, Irene & Pratelli, Luca, 2005. "Convergence results for multivariate martingales," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 571-577, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:126:y:2016:i:3:p:930-947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.