IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v174y2024ics0304414924000826.html
   My bibliography  Save this article

Networks of reinforced stochastic processes: Probability of asymptotic polarization and related general results

Author

Listed:
  • Aletti, Giacomo
  • Crimaldi, Irene
  • Ghiglietti, Andrea

Abstract

In a network of reinforced stochastic processes, for certain values of the parameters, all the agents’ inclinations synchronize and converge almost surely toward a certain random variable. The present work aims at clarifying when the agents can asymptotically polarize, i.e. when the common limit inclination can take the extreme values, 0 or 1, with probability zero, strictly positive, or equal to one. Moreover, we present a suitable technique to estimate this probability that, along with the theoretical results, has been framed in the more general setting of a class of martingales taking values in [0,1] and following a specific dynamics.

Suggested Citation

  • Aletti, Giacomo & Crimaldi, Irene & Ghiglietti, Andrea, 2024. "Networks of reinforced stochastic processes: Probability of asymptotic polarization and related general results," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:spapps:v:174:y:2024:i:c:s0304414924000826
    DOI: 10.1016/j.spa.2024.104376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924000826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
    2. Aletti, Giacomo & Ghiglietti, Andrea, 2017. "Interacting generalized Friedman’s urn systems," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2650-2678.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irene Crimaldi & Pierre-Yves Louis & Ida Minelli, 2020. "Interacting non-linear reinforced stochastic processes: Synchronization and no-synchronization," Working Papers hal-02910341, HAL.
    2. Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
    3. Yuan Hu & Abootaleb Shirvani & W. Brent Lindquist & Frank J. Fabozzi & Svetlozar T. Rachev, 2020. "Option Pricing Incorporating Factor Dynamics in Complete Markets," Papers 2011.08343, arXiv.org.
    4. Rosales, Rafael A. & Prado, Fernando P.A. & Pires, Benito, 2022. "Vertex reinforced random walks with exponential interaction on complete graphs," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 353-379.
    5. Yuan Hu & Abootaleb Shirvani & W. Brent Lindquist & Frank J. Fabozzi & Svetlozar T. Rachev, 2020. "Option Pricing Incorporating Factor Dynamics in Complete Markets," JRFM, MDPI, vol. 13(12), pages 1-33, December.
    6. Yogesh Dahiya & Neeraja Sahasrabudhe, 2024. "Urns with Multiple Drawings and Graph-Based Interaction," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3283-3316, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:174:y:2024:i:c:s0304414924000826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.