IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i2p453-467.html
   My bibliography  Save this article

An asymptotic theory for sample covariances of Bernoulli shifts

Author

Listed:
  • Wu, Wei Biao

Abstract

Covariances play a fundamental role in the theory of stationary processes and they can naturally be estimated by sample covariances. There is a well-developed asymptotic theory for sample covariances of linear processes. For nonlinear processes, however, many important problems on their asymptotic behaviors are still unanswered. The paper presents a systematic asymptotic theory for sample covariances of nonlinear time series. Our results are applied to the test of correlations.

Suggested Citation

  • Wu, Wei Biao, 2009. "An asymptotic theory for sample covariances of Bernoulli shifts," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 453-467, February.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:2:p:453-467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00041-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harris, David & McCabe, Brendan & Leybourne, Stephen, 2003. "Some Limit Theory For Autocovariances Whose Order Depends On Sample Size," Econometric Theory, Cambridge University Press, vol. 19(5), pages 829-864, October.
    2. Biao Wu, Wei & Min, Wanli, 2005. "On linear processes with dependent innovations," Stochastic Processes and their Applications, Elsevier, vol. 115(6), pages 939-958, June.
    3. Volný, Dalibor, 1993. "Approximating martingales and the central limit theorem for strictly stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 44(1), pages 41-74, January.
    4. Hosking, Jonathan R. M., 1996. "Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series," Journal of Econometrics, Elsevier, vol. 73(1), pages 261-284, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Rongmao & Chan, Ngai Hang, 2018. "Portmanteau-type tests for unit-root and cointegration," Journal of Econometrics, Elsevier, vol. 207(2), pages 307-324.
    2. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2022. "Data-driven portmanteau tests for time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 675-698, September.
    3. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    4. Jirak, Moritz, 2014. "Simultaneous confidence bands for sequential autoregressive fitting," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 130-149.
    5. Xiao, Han & Wu, Wei Biao, 2019. "Portmanteau Test and Simultaneous Inference for Serial Covariances," IRTG 1792 Discussion Papers 2019-017, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    6. Alexander Braumann & Jens‐Peter Kreiss & Marco Meyer, 2021. "Simultaneous inference for autocovariances based on autoregressive sieve bootstrap," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 534-553, September.
    7. Jirak, Moritz, 2013. "A Darling–Erdös type result for stationary ellipsoids," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 1922-1946.
    8. Jirak, Moritz, 2011. "On the maximum of covariance estimators," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1032-1046, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jérôme Dedecker & Florence Merlevède & Dalibor Volný, 2007. "On the Weak Invariance Principle for Non-Adapted Sequences under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 20(4), pages 971-1004, December.
    2. Jirak, Moritz, 2011. "On the maximum of covariance estimators," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1032-1046, July.
    3. Zhang, Rong-Mao & Sin, Chor-yiu (CY) & Ling, Shiqing, 2015. "On functional limits of short- and long-memory linear processes with GARCH(1,1) noises," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 482-512.
    4. Beran, Jan & Feng, Yuanhua, 1999. "Local Polynomial Estimation with a FARIMA-GARCH Error Process," CoFE Discussion Papers 99/08, University of Konstanz, Center of Finance and Econometrics (CoFE).
    5. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2022. "Globalization, long memory, and real interest rate convergence: a historical perspective," Empirical Economics, Springer, vol. 63(5), pages 2331-2355, November.
    6. Shao, Xiaofeng, 2011. "A bootstrap-assisted spectral test of white noise under unknown dependence," Journal of Econometrics, Elsevier, vol. 162(2), pages 213-224, June.
    7. Hassan B. Ghassan & Zakaria Boulanouar & Kabir M. Hassan, 2021. "Revisiting Banking Stability Using a New Panel Cointegration Test," IJFS, MDPI, vol. 9(2), pages 1-8, April.
    8. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Bandwidth selection by cross-validation for forecasting long memory financial time series," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 129-143.
    9. Leonardo Rocha Souza, 2007. "Temporal Aggregation and Bandwidth selection in estimating long memory," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(5), pages 701-722, September.
    10. Granger, C.W.J. (Clive William John) & Marmol, Francesc, 1998. "The correlogram of a long memory process plus a simple noise," DES - Working Papers. Statistics and Econometrics. WS 9820, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Wang, Cindy Shin-Huei & Bauwens, Luc & Hsiao, Cheng, 2013. "Forecasting a long memory process subject to structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 171-184.
    12. Giraitis, Liudas & Phillips, Peter C.B., 2012. "Mean and autocovariance function estimation near the boundary of stationarity," Journal of Econometrics, Elsevier, vol. 169(2), pages 166-178.
    13. Bai, Shuyang & Taqqu, Murad S., 2019. "Sensitivity of the Hermite rank," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 822-840.
    14. Kyaw, NyoNyo A. & Los, Cornelis A. & Zong, Sijing, 2006. "Persistence characteristics of Latin American financial markets," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 269-290, July.
    15. Zhengyan Lin & Hanchao Wang, 2016. "On Convergence to Stochastic Integrals," Journal of Theoretical Probability, Springer, vol. 29(3), pages 717-736, September.
    16. Ole E. Barndorff-Nielsen & Asger Lunde & Neil Shephard & Almut E.D. Veraart, 2014. "Integer-valued Trawl Processes: A Class of Stationary Infinitely Divisible Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 693-724, September.
    17. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    18. Peligrad, Magda, 2020. "A new CLT for additive functionals of Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5695-5708.
    19. Dmitrij Celov & Remigijus Leipus & Anne Philippe, 2010. "Asymptotic normality of the mixture density estimator in a disaggregation scheme," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 425-442.
    20. Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015. "Higher-order improvements of the sieve bootstrap for fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:2:p:453-467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.