IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v20y2007i4d10.1007_s10959-007-0090-1.html
   My bibliography  Save this article

On the Weak Invariance Principle for Non-Adapted Sequences under Projective Criteria

Author

Listed:
  • Jérôme Dedecker

    (Université Paris VI)

  • Florence Merlevède

    (Université Paris VI, et C.N.R.S UMR 7599)

  • Dalibor Volný

    (Université de Rouen)

Abstract

In this paper we study the central limit theorem and its weak invariance principle for sums of non-adapted stationary sequences, under different normalizations. Our conditions involve the conditional expectation of the variables with respect to a given σ-algebra, as done in Gordin (Dokl. Akad. Nauk SSSR 188, 739–741, 1969) and Heyde (Z. Wahrsch. verw. Gebiete 30, 315–320, 1974). These conditions are well adapted to a large variety of examples, including linear processes with dependent innovations or regular functions of linear processes.

Suggested Citation

  • Jérôme Dedecker & Florence Merlevède & Dalibor Volný, 2007. "On the Weak Invariance Principle for Non-Adapted Sequences under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 20(4), pages 971-1004, December.
  • Handle: RePEc:spr:jotpro:v:20:y:2007:i:4:d:10.1007_s10959-007-0090-1
    DOI: 10.1007/s10959-007-0090-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-007-0090-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-007-0090-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Woodroofe, Michael, 1992. "A central limit theorem for functions of a Markov chain with applications to shifts," Stochastic Processes and their Applications, Elsevier, vol. 41(1), pages 33-44, May.
    2. Volný, Dalibor, 1993. "Approximating martingales and the central limit theorem for strictly stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 44(1), pages 41-74, January.
    3. Hannan, E. J., 1979. "The central limit theorem for time series regression," Stochastic Processes and their Applications, Elsevier, vol. 9(3), pages 281-289, December.
    4. Florence Merlevède & Magda Peligrad, 2006. "On the Weak Invariance Principle for Stationary Sequences under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 19(3), pages 647-689, December.
    5. Biao Wu, Wei & Min, Wanli, 2005. "On linear processes with dependent innovations," Stochastic Processes and their Applications, Elsevier, vol. 115(6), pages 939-958, June.
    6. Dedecker, Jérôme & Merlevède, Florence, 2003. "The conditional central limit theorem in Hilbert spaces," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 229-262, December.
    7. Wang, Qiying & Lin, Yan-Xia & Gulati, Chandra M., 2002. "The Invariance Principle For Linear Processes With Applications," Econometric Theory, Cambridge University Press, vol. 18(1), pages 119-139, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yizao Wang, 2014. "An Invariance Principle for Fractional Brownian Sheets," Journal of Theoretical Probability, Springer, vol. 27(4), pages 1124-1139, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biao Wu, Wei & Min, Wanli, 2005. "On linear processes with dependent innovations," Stochastic Processes and their Applications, Elsevier, vol. 115(6), pages 939-958, June.
    2. Wu, Wei Biao, 2009. "An asymptotic theory for sample covariances of Bernoulli shifts," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 453-467, February.
    3. Cuny, Christophe & Fan, Ai Hua, 2017. "Study of almost everywhere convergence of series by mean of martingale methods," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2725-2750.
    4. Dedecker, Jérôme & Merlevède, Florence, 2011. "Rates of convergence in the central limit theorem for linear statistics of martingale differences," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1013-1043, May.
    5. Shao, Xiaofeng, 2011. "A bootstrap-assisted spectral test of white noise under unknown dependence," Journal of Econometrics, Elsevier, vol. 162(2), pages 213-224, June.
    6. Zhao, Zhibiao & Wu, Wei Biao, 2007. "Asymptotic theory for curve-crossing analysis," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 862-877, July.
    7. Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.
    8. James A. Duffy, 2015. "Uniform Convergence Rates over Maximal Domains in Structural Nonparametric Cointegrating Regression," Economics Papers 2015-W03, Economics Group, Nuffield College, University of Oxford.
    9. Morten Ø. Nielsen & Per Houmann Frederiksen, 2008. "Fully Modified Narrow-band Least Squares Estimation Of Stationary Fractional Cointegration," Working Paper 1171, Economics Department, Queen's University.
    10. Stefan Richter & Weining Wang & Wei Biao Wu, 2018. "A supreme test for periodic explosive GARCH," Papers 1812.03475, arXiv.org.
    11. Volný, Dalibor & Woodroofe, Michael, 2014. "Quenched central limit theorems for sums of stationary processes," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 161-167.
    12. Leucht, Anne, 2012. "Characteristic function-based hypothesis tests under weak dependence," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 67-89.
    13. Sayar Karmakar & Marek Chudy & Wei Biao Wu, 2020. "Long-term prediction intervals with many covariates," Papers 2012.08223, arXiv.org, revised Sep 2021.
    14. Alsmeyer, Gerold & Buckmann, Fabian, 2019. "An arcsine law for Markov random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 223-239.
    15. Ronald Kwon & Brigitte Flores & Haydee Yonamine, 2018. "Spatial Segregation and the Impact of Linguistic Multicultural Policies Within the USA," Journal of International Migration and Integration, Springer, vol. 19(2), pages 213-232, May.
    16. Barry G. Quinn, 2021. "Fisher's g Revisited," International Statistical Review, International Statistical Institute, vol. 89(2), pages 402-419, August.
    17. Peligrad, Magda, 2020. "A new CLT for additive functionals of Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5695-5708.
    18. Berkes, István & Hörmann, Siegfried & Schauer, Johannes, 2009. "Asymptotic results for the empirical process of stationary sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1298-1324, April.
    19. Yizao Wang, 2014. "An Invariance Principle for Fractional Brownian Sheets," Journal of Theoretical Probability, Springer, vol. 27(4), pages 1124-1139, December.
    20. Liudas Giraitis & Peter M Robinson, 2001. "Parametric Estimation under Long-Range Dependence," STICERD - Econometrics Paper Series 416, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:20:y:2007:i:4:d:10.1007_s10959-007-0090-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.