IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i1p66-83.html
   My bibliography  Save this article

Sample path Large Deviations and optimal importance sampling for stochastic volatility models

Author

Listed:
  • Robertson, Scott

Abstract

Sample path Large Deviation Principles (LDP) of the Freidlin-Wentzell type are derived for a class of diffusions, which govern the price dynamics in common stochastic volatility models from Mathematical Finance. LDP are obtained by relaxing the non-degeneracy requirement on the diffusion matrix in the standard theory of Freidlin and Wentzell. As an application, a sample path LDP is proved for the price process in the Heston stochastic volatility model. Using the sample path LDP for the Heston model, the problem is considered of selecting an importance sampling change of drift, for both the price and volatility, which minimize the variance of Monte Carlo estimators for path-dependent option prices. An asymptotically optimal change of drift is identified as a solution to a two-dimensional variational problem. The case of the arithmetic average Asian put option is solved in detail.

Suggested Citation

  • Robertson, Scott, 2010. "Sample path Large Deviations and optimal importance sampling for stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 66-83, January.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:1:p:66-83
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00189-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.
    2. Paolo Guasoni & Scott Robertson, 2008. "Optimal importance sampling with explicit formulas in continuous time," Finance and Stochastics, Springer, vol. 12(1), pages 1-19, January.
    3. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Archil Gulisashvili, 2020. "Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness," Papers 2002.05143, arXiv.org, revised Dec 2020.
    2. Antoine Jacquier & Konstantinos Spiliopoulos, 2018. "Pathwise moderate deviations for option pricing," Papers 1803.04483, arXiv.org, revised Dec 2018.
    3. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2018. "Precise asymptotics: robust stochastic volatility models," Papers 1811.00267, arXiv.org, revised Nov 2020.
    4. Zorana Grbac & David Krief & Peter Tankov, 2021. "Long-Time Trajectorial Large Deviations and Importance Sampling for Affine Stochastic Volatility Models," Post-Print hal-03899237, HAL.
    5. Genin, Adrien & Tankov, Peter, 2020. "Optimal importance sampling for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 20-46.
    6. Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
    7. Archil Gulisashvili, 2020. "Large deviation principles for stochastic volatility models with reflection and three faces of the Stein and Stein model," Papers 2006.15431, arXiv.org.
    8. Archil Gulisashvili, 2018. "Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions," Papers 1808.00421, arXiv.org, revised Jun 2019.
    9. Archil Gulisashvili, 2022. "Multivariate Stochastic Volatility Models and Large Deviation Principles," Papers 2203.09015, arXiv.org, revised Nov 2022.
    10. Adrien Genin & Peter Tankov, 2016. "Optimal importance sampling for L\'evy Processes," Papers 1608.04621, arXiv.org.
    11. dos Reis, Gonçalo & Smith, Greig & Tankov, Peter, 2023. "Importance sampling for McKean-Vlasov SDEs," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    12. Aur'elien Alfonsi & David Krief & Peter Tankov, 2018. "Long-time large deviations for the multi-asset Wishart stochastic volatility model and option pricing," Papers 1806.06883, arXiv.org.
    13. Baldi, P. & Caramellino, L., 2011. "General Freidlin-Wentzell Large Deviations and positive diffusions," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1218-1229, August.
    14. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
    15. Martin Forde & Antoine Jacquier, 2011. "The large-maturity smile for the Heston model," Finance and Stochastics, Springer, vol. 15(4), pages 755-780, December.
    16. Djellout, Hacène & Guillin, Arnaud & Samoura, Yacouba, 2017. "Estimation of the realized (co-)volatility vector: Large deviations approach," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2926-2960.
    17. Zorana Grbac & David Krief & Peter Tankov, 2018. "Long-time trajectorial large deviations for affine stochastic volatility models and application to variance reduction for option pricing," Papers 1809.06153, arXiv.org.
    18. Gulisashvili, Archil, 2020. "Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3648-3686.
    19. Gulisashvili, Archil, 2021. "Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 37-79.
    20. Marc Geha & Antoine Jacquier & Zan Zuric, 2021. "Large and moderate deviations for importance sampling in the Heston model," Papers 2111.00348, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aur'elien Alfonsi & David Krief & Peter Tankov, 2018. "Long-time large deviations for the multi-asset Wishart stochastic volatility model and option pricing," Papers 1806.06883, arXiv.org.
    2. Dan Pirjol & Xiaoyu Wang & Lingjiong Zhu, 2024. "Short-maturity asymptotics for VIX and European options in local-stochastic volatility models," Papers 2407.16813, arXiv.org.
    3. Zorana Grbac & David Krief & Peter Tankov, 2018. "Long-time trajectorial large deviations for affine stochastic volatility models and application to variance reduction for option pricing," Papers 1809.06153, arXiv.org.
    4. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    5. Söderlind, Paul, 2009. "The C-CAPM without ex post data," Journal of Macroeconomics, Elsevier, vol. 31(4), pages 721-729, December.
    6. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    7. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    8. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    9. Peng He, 2012. "Option Portfolio Value At Risk Using Monte Carlo Simulation Under A Risk Neutral Stochastic Implied Volatility Model," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 6(5), pages 65-72.
    10. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2019. "A Volatility Smile-Based Uncertainty Index," Working Papers Series 502, Central Bank of Brazil, Research Department.
    11. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    12. Semih Yon & Cafer Erhan Bozdag, 2014. "Test of Log-Normal Process with Importance Sampling for Options Pricing," Proceedings of Economics and Finance Conferences 0401571, International Institute of Social and Economic Sciences.
    13. Peter Christoffersen & Ruslan Goyenko & Kris Jacobs & Mehdi Karoui, 2018. "Illiquidity Premia in the Equity Options Market," The Review of Financial Studies, Society for Financial Studies, vol. 31(3), pages 811-851.
    14. Siu, Tak Kuen & Yang, Hailiang & Lau, John W., 2008. "Pricing currency options under two-factor Markov-modulated stochastic volatility models," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 295-302, December.
    15. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    16. Jitka Hilliard & Wei Li, 2014. "Volatilities implied by price changes in the S&P 500 options and futures contracts," Review of Quantitative Finance and Accounting, Springer, vol. 42(4), pages 599-626, May.
    17. Tsekrekos, Andrianos E. & Yannacopoulos, Athanasios N., 2016. "Optimal switching decisions under stochastic volatility with fast mean reversion," European Journal of Operational Research, Elsevier, vol. 251(1), pages 148-157.
    18. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    19. C. He & J. Kennedy & T. Coleman & P. Forsyth & Y. Li & K. Vetzal, 2006. "Calibration and hedging under jump diffusion," Review of Derivatives Research, Springer, vol. 9(1), pages 1-35, January.
    20. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:1:p:66-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.