IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v29y2025i1d10.1007_s00780-024-00549-x.html
   My bibliography  Save this article

Importance sampling for option pricing with feedforward neural networks

Author

Listed:
  • Aleksandar Arandjelović

    (TU Wien)

  • Thorsten Rheinländer

    (TU Wien)

  • Pavel V. Shevchenko

    (Macquarie University)

Abstract

We study the problem of reducing the variance of Monte Carlo estimators through performing suitable changes of the sampling measure computed by feedforward neural networks. To this end, building on the concept of vector stochastic integration, we characterise the Cameron–Martin spaces of a large class of Gaussian measures induced by vector-valued continuous local martingales with deterministic covariation. We prove that feedforward neural networks enjoy, up to an isometry, the universal approximation property in these topological spaces. We then prove that sampling measures generated by feedforward neural networks can approximate the optimal sampling measure arbitrarily well. We conclude with a comprehensive numerical study pricing path-dependent European options for asset price models that incorporate factors such as changing business activity, knock-out barriers, dynamic correlations and high-dimensional baskets.

Suggested Citation

  • Aleksandar Arandjelović & Thorsten Rheinländer & Pavel V. Shevchenko, 2025. "Importance sampling for option pricing with feedforward neural networks," Finance and Stochastics, Springer, vol. 29(1), pages 97-141, January.
  • Handle: RePEc:spr:finsto:v:29:y:2025:i:1:d:10.1007_s00780-024-00549-x
    DOI: 10.1007/s00780-024-00549-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-024-00549-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-024-00549-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Genin, Adrien & Tankov, Peter, 2020. "Optimal importance sampling for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 20-46.
    3. Paolo Guasoni & Scott Robertson, 2008. "Optimal importance sampling with explicit formulas in continuous time," Finance and Stochastics, Springer, vol. 12(1), pages 1-19, January.
    4. Lingfei Li & Rafael Mendoza-Arriaga & Zhiyu Mo & Daniel Mitchell, 2016. "Modelling electricity prices: a time change approach," Quantitative Finance, Taylor & Francis Journals, vol. 16(7), pages 1089-1109, July.
    5. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    6. dos Reis, Gonçalo & Smith, Greig & Tankov, Peter, 2023. "Importance sampling for McKean-Vlasov SDEs," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    7. Philip Protter & Emmanuelle Clément & Damien Lamberton, 2002. "An analysis of a least squares regression method for American option pricing," Finance and Stochastics, Springer, vol. 6(4), pages 449-471.
    8. Robertson, Scott, 2010. "Sample path Large Deviations and optimal importance sampling for stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 66-83, January.
    9. Baldi, P. & Ben Arous, G. & Kerkyacharian, G., 1992. "Large deviations and the Strassen theorem in Hölder norm," Stochastic Processes and their Applications, Elsevier, vol. 42(1), pages 171-180, August.
    10. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    11. Luca Capriotti, 2008. "Least-squares Importance Sampling for Monte Carlo security pricing," Quantitative Finance, Taylor & Francis Journals, vol. 8(5), pages 485-497.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. dos Reis, Gonçalo & Smith, Greig & Tankov, Peter, 2023. "Importance sampling for McKean-Vlasov SDEs," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    2. Bendera, Christian & Moseler, Thilo, 2008. "Importance sampling for backward SDEs," CoFE Discussion Papers 08/11, University of Konstanz, Center of Finance and Econometrics (CoFE).
    3. Marta Biancardi & Giovanni Villani, 2017. "Robust Monte Carlo Method for R&D Real Options Valuation," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 481-498, March.
    4. Hainaut, Donatien & Akbaraly, Adnane, 2023. "Risk management with Local Least Squares Monte-Carlo," LIDAM Discussion Papers ISBA 2023003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    6. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    7. Shuai Gao & Jun Zhao, 2016. "Pricing 50ETF in the Way of American Options Based on Least Squares Monte Carlo Simulation," Applied Finance and Accounting, Redfame publishing, vol. 2(2), pages 71-76, August.
    8. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    9. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    10. Garcia, Diego, 2003. "Convergence and Biases of Monte Carlo estimates of American option prices using a parametric exercise rule," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1855-1879, August.
    11. Ma, Jin & Zhang, Jianfeng, 2005. "Representations and regularities for solutions to BSDEs with reflections," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 539-569, April.
    12. Farid AitSahlia & Manisha Goswami & Suchandan Guha, 2010. "American option pricing under stochastic volatility: an efficient numerical approach," Computational Management Science, Springer, vol. 7(2), pages 171-187, April.
    13. Vijay V. Desai & Vivek F. Farias & Ciamac C. Moallemi, 2012. "Pathwise Optimization for Optimal Stopping Problems," Management Science, INFORMS, vol. 58(12), pages 2292-2308, December.
    14. Genin, Adrien & Tankov, Peter, 2020. "Optimal importance sampling for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 20-46.
    15. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2008. "Simulation-based pricing of convertible bonds," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 310-331, March.
    16. Reesor, R. Mark & Stentoft, Lars & Zhu, Xiaotian, 2024. "A critical analysis of the Weighted Least Squares Monte Carlo method for pricing American options," Finance Research Letters, Elsevier, vol. 64(C).
    17. S'ergio C. Bezerra & Alberto Ohashi & Francesco Russo & Francys de Souza, 2017. "Discrete-type approximations for non-Markovian optimal stopping problems: Part II," Papers 1707.05250, arXiv.org, revised Dec 2019.
    18. Jérôme Lelong, 2019. "Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach," Working Papers hal-01983115, HAL.
    19. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    20. Berridge, S.J. & Schumacher, J.M., 2002. "An Irregular Grid Approach for Pricing High Dimensional American Options," Discussion Paper 2002-99, Tilburg University, Center for Economic Research.

    More about this item

    Keywords

    Cameron–Martin space; Doléans–Dade exponential; Feedforward neural networks; Importance sampling; Universal approximation;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:29:y:2025:i:1:d:10.1007_s00780-024-00549-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.