IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v29y2025i1d10.1007_s00780-024-00549-x.html
   My bibliography  Save this article

Importance sampling for option pricing with feedforward neural networks

Author

Listed:
  • Aleksandar Arandjelović

    (TU Wien)

  • Thorsten Rheinländer

    (TU Wien)

  • Pavel V. Shevchenko

    (Macquarie University)

Abstract

We study the problem of reducing the variance of Monte Carlo estimators through performing suitable changes of the sampling measure computed by feedforward neural networks. To this end, building on the concept of vector stochastic integration, we characterise the Cameron–Martin spaces of a large class of Gaussian measures induced by vector-valued continuous local martingales with deterministic covariation. We prove that feedforward neural networks enjoy, up to an isometry, the universal approximation property in these topological spaces. We then prove that sampling measures generated by feedforward neural networks can approximate the optimal sampling measure arbitrarily well. We conclude with a comprehensive numerical study pricing path-dependent European options for asset price models that incorporate factors such as changing business activity, knock-out barriers, dynamic correlations and high-dimensional baskets.

Suggested Citation

  • Aleksandar Arandjelović & Thorsten Rheinländer & Pavel V. Shevchenko, 2025. "Importance sampling for option pricing with feedforward neural networks," Finance and Stochastics, Springer, vol. 29(1), pages 97-141, January.
  • Handle: RePEc:spr:finsto:v:29:y:2025:i:1:d:10.1007_s00780-024-00549-x
    DOI: 10.1007/s00780-024-00549-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-024-00549-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-024-00549-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Cameron–Martin space; Doléans–Dade exponential; Feedforward neural networks; Importance sampling; Universal approximation;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:29:y:2025:i:1:d:10.1007_s00780-024-00549-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.