General Freidlin-Wentzell Large Deviations and positive diffusions
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Robertson, Scott, 2010. "Sample path Large Deviations and optimal importance sampling for stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 66-83, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2017. "Most-likely-path in Asian option pricing under local volatility models," Papers 1706.02408, arXiv.org, revised Aug 2018.
- Archil Gulisashvili, 2020. "Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness," Papers 2002.05143, arXiv.org, revised Dec 2020.
- Gulisashvili, Archil, 2020. "Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3648-3686.
- Cai, Yujie & Wang, Shaochen, 2015. "Central limit theorem and moderate deviation principle for CKLS model with small random perturbation," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 6-11.
- Archil Gulisashvili, 2020. "Large deviation principles for stochastic volatility models with reflection and three faces of the Stein and Stein model," Papers 2006.15431, arXiv.org.
- Archil Gulisashvili, 2018. "Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions," Papers 1808.00421, arXiv.org, revised Jun 2019.
- Gulisashvili, Archil, 2021. "Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 37-79.
- Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
- Dong, Zhao & Gu, Fan & Li, Liang, 2024. "The concentration of zero-noise limits of invariant measures for stochastic dynamical systems," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
- Dan Pirjol & Jing Wang & Lingjiong Zhu, 2017. "Short Maturity Forward Start Asian Options in Local Volatility Models," Papers 1710.03160, arXiv.org.
- Marc Geha & Antoine Jacquier & Zan Zuric, 2021. "Large and moderate deviations for importance sampling in the Heston model," Papers 2111.00348, arXiv.org.
- Dan Pirjol & Lingjiong Zhu, 2017. "Short Maturity Asian Options for the CEV Model," Papers 1702.03382, arXiv.org.
- Archil Gulisashvili, 2022. "Multivariate Stochastic Volatility Models and Large Deviation Principles," Papers 2203.09015, arXiv.org, revised Nov 2022.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Peter K. Friz & Paul Gassiat & Paolo Pigato, 2018. "Precise asymptotics: robust stochastic volatility models," Papers 1811.00267, arXiv.org, revised Nov 2020.
- Archil Gulisashvili, 2022. "Multivariate Stochastic Volatility Models and Large Deviation Principles," Papers 2203.09015, arXiv.org, revised Nov 2022.
- Antoine Jacquier & Konstantinos Spiliopoulos, 2018. "Pathwise moderate deviations for option pricing," Papers 1803.04483, arXiv.org, revised Dec 2018.
- Aur'elien Alfonsi & David Krief & Peter Tankov, 2018. "Long-time large deviations for the multi-asset Wishart stochastic volatility model and option pricing," Papers 1806.06883, arXiv.org.
- Aleksandar Arandjelović & Thorsten Rheinländer & Pavel V. Shevchenko, 2025. "Importance sampling for option pricing with feedforward neural networks," Finance and Stochastics, Springer, vol. 29(1), pages 97-141, January.
- Archil Gulisashvili, 2020. "Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness," Papers 2002.05143, arXiv.org, revised Dec 2020.
- Genin, Adrien & Tankov, Peter, 2020. "Optimal importance sampling for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 20-46.
- dos Reis, Gonçalo & Smith, Greig & Tankov, Peter, 2023. "Importance sampling for McKean-Vlasov SDEs," Applied Mathematics and Computation, Elsevier, vol. 453(C).
- Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
- Marc Geha & Antoine Jacquier & Zan Zuric, 2021. "Large and moderate deviations for importance sampling in the Heston model," Papers 2111.00348, arXiv.org.
- Archil Gulisashvili, 2018. "Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions," Papers 1808.00421, arXiv.org, revised Jun 2019.
- Gulisashvili, Archil, 2021. "Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 37-79.
- Adrien Genin & Peter Tankov, 2016. "Optimal importance sampling for L\'evy Processes," Papers 1608.04621, arXiv.org.
- Martin Forde & Antoine Jacquier, 2011. "The large-maturity smile for the Heston model," Finance and Stochastics, Springer, vol. 15(4), pages 755-780, December.
- Djellout, Hacène & Guillin, Arnaud & Samoura, Yacouba, 2017. "Estimation of the realized (co-)volatility vector: Large deviations approach," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2926-2960.
- Zorana Grbac & David Krief & Peter Tankov, 2018. "Long-time trajectorial large deviations for affine stochastic volatility models and application to variance reduction for option pricing," Papers 1809.06153, arXiv.org.
- Archil Gulisashvili, 2020. "Large deviation principles for stochastic volatility models with reflection and three faces of the Stein and Stein model," Papers 2006.15431, arXiv.org.
- Zorana Grbac & David Krief & Peter Tankov, 2021. "Long-Time Trajectorial Large Deviations and Importance Sampling for Affine Stochastic Volatility Models," Post-Print hal-03899237, HAL.
- Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
- Gulisashvili, Archil, 2020. "Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3648-3686.
More about this item
Keywords
Large Deviations Diffusion processes CIR and CEV models;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1218-1229. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.