IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.16813.html
   My bibliography  Save this paper

Short-maturity asymptotics for VIX and European options in local-stochastic volatility models

Author

Listed:
  • Dan Pirjol
  • Xiaoyu Wang
  • Lingjiong Zhu

Abstract

We derive the short-maturity asymptotics for European and VIX option prices in local-stochastic volatility models where the volatility follows a continuous-path Markov process. Both out-of-the-money (OTM) and at-the-money (ATM) asymptotics are considered. Using large deviations theory methods, the asymptotics for the OTM options are expressed as a two-dimensional variational problem, which is reduced to an extremal problem for a function of two real variables. This extremal problem is solved explicitly in an expansion in log-moneyness. We derive series expansions for the implied volatility for European and VIX options which should be useful for model calibration. We give explicit results for two classes of local-stochastic volatility models relevant in practice, with Heston-type and SABR-type stochastic volatility. The leading-order asymptotics for at-the-money options are computed in closed-form. The asymptotic results reproduce known results in the literature for the Heston and SABR models and for the uncorrelated local-stochastic volatility model. The asymptotic results are tested against numerical simulations for a local-stochastic volatility model with bounded local volatility.

Suggested Citation

  • Dan Pirjol & Xiaoyu Wang & Lingjiong Zhu, 2024. "Short-maturity asymptotics for VIX and European options in local-stochastic volatility models," Papers 2407.16813, arXiv.org.
  • Handle: RePEc:arx:papers:2407.16813
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.16813
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    2. Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.
    3. H. Berestycki & J. Busca & I. Florent, 2002. "Asymptotics and calibration of local volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 61-69.
    4. Jérôme Detemple & Carlton Osakwe, 2000. "The Valuation of Volatility Options," Review of Finance, European Finance Association, vol. 4(1), pages 21-50.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Martin Forde & Benjamin Smith, 2023. "Markovian Stochastic Volatility With Stochastic Correlation €” Joint Calibration And Consistency Of Spx/Vix Short-Maturity Smiles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 26(02n03), pages 1-42, May.
    7. Antoine Jacquier & Aitor Muguruza & Alexandre Pannier, 2021. "Rough multifactor volatility for SPX and VIX options," Papers 2112.14310, arXiv.org, revised Nov 2023.
    8. Stefano Pagliarani & Andrea Pascucci, 2013. "Local Stochastic Volatility With Jumps: Analytical Approximations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(08), pages 1-35.
    9. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    10. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    11. Dan Pirjol & Lingjiong Zhu, 2016. "Short Maturity Asian Options in Local Volatility Models," Papers 1609.07559, arXiv.org.
    12. Martin Forde & Antoine Jacquier, 2009. "Small-Time Asymptotics For Implied Volatility Under The Heston Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(06), pages 861-876.
    13. Peter Carr & Hélyette Geman & Dilip Madan & Marc Yor, 2005. "Pricing options on realized variance," Finance and Stochastics, Springer, vol. 9(4), pages 453-475, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Pirjol & Xiaoyu Wang & Lingjiong Zhu, 2024. "Short-maturity options on realized variance in local-stochastic volatility models," Papers 2411.02520, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    2. Wei Lin & Shenghong Li & Xingguo Luo & Shane Chern, 2015. "Consistent Pricing of VIX and Equity Derivatives with the 4/2 Stochastic Volatility Plus Jumps Model," Papers 1510.01172, arXiv.org, revised Nov 2015.
    3. Wendong Zheng & Pingping Zeng, 2015. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Papers 1504.08136, arXiv.org.
    4. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    5. Wendong Zheng & Pingping Zeng, 2016. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 344-373, September.
    6. Hossein Jafari & Ghazaleh Rahimi, 2019. "Small-Time Asymptotics In Geometric Asian Options For A Stochastic Volatility Jump-Diffusion Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-19, March.
    7. Dan Pirjol & Lingjiong Zhu, 2020. "Asymptotics of the time-discretized log-normal SABR model: The implied volatility surface," Papers 2001.09850, arXiv.org, revised Mar 2020.
    8. Lian, Guanghua & Chiarella, Carl & Kalev, Petko S., 2014. "Volatility swaps and volatility options on discretely sampled realized variance," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 239-262.
    9. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    10. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    11. Falko Baustian & Katev{r}ina Filipov'a & Jan Posp'iv{s}il, 2019. "Solution of option pricing equations using orthogonal polynomial expansion," Papers 1912.06533, arXiv.org, revised Jun 2020.
    12. Minqiang Li, 2015. "Derivatives Pricing on Integrated Diffusion Processes: A General Perturbation Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(6), pages 582-595, June.
    13. Dan Pirjol & Lingjiong Zhu, 2024. "Short-maturity asymptotics for option prices with interest rates effects," Papers 2402.14161, arXiv.org.
    14. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    15. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2017. "Explicit Implied Volatilities For Multifactor Local-Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 926-960, July.
    16. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    17. Archil Gulisashvili & Peter Tankov, 2014. "Implied volatility of basket options at extreme strikes," Papers 1406.0394, arXiv.org.
    18. Emmanuel Coffie, 2022. "Numerical Method for Highly Non-linear Mean-reverting Asset Price Model with CEV-type Process," Papers 2205.00634, arXiv.org.
    19. Erhan Bayraktar & Constantinos Kardaras & Hao Xing, 2010. "Valuation equations for stochastic volatility models," Papers 1004.3299, arXiv.org, revised Dec 2011.
    20. Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.16813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.