IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03899237.html
   My bibliography  Save this paper

Long-Time Trajectorial Large Deviations and Importance Sampling for Affine Stochastic Volatility Models

Author

Listed:
  • Zorana Grbac

    (UPCité - Université Paris Cité)

  • David Krief

    (UPD7 - Université Paris Diderot - Paris 7)

  • Peter Tankov

    (ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique)

Abstract

We establish a pathwise large deviation principle for affine stochastic volatility models introduced by Keller-Ressel (2011), and present an application to variance reduction for Monte Carlo computation of prices of path-dependent options in these models, extending the method developed by Genin and Tankov (2020) for exponential Lévy models. To this end, we apply an exponentially affine change of measure and use Varadhan's lemma, in the fashion of Guasoni and Robertson (2008) and Robertson (2010), to approximate the problem of finding the measure that minimizes the variance of the Monte Carlo estimator. We test the method on the Heston model with and without jumps to demonstrate its numerical efficiency.

Suggested Citation

  • Zorana Grbac & David Krief & Peter Tankov, 2021. "Long-Time Trajectorial Large Deviations and Importance Sampling for Affine Stochastic Volatility Models," Post-Print hal-03899237, HAL.
  • Handle: RePEc:hal:journl:hal-03899237
    DOI: 10.1017/apr.2020.58
    Note: View the original document on HAL open archive server: https://hal.science/hal-03899237v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03899237v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1017/apr.2020.58?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paolo Guasoni & Scott Robertson, 2008. "Optimal importance sampling with explicit formulas in continuous time," Finance and Stochastics, Springer, vol. 12(1), pages 1-19, January.
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    3. Robertson, Scott, 2010. "Sample path Large Deviations and optimal importance sampling for stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 66-83, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aur'elien Alfonsi & David Krief & Peter Tankov, 2018. "Long-time large deviations for the multi-asset Wishart stochastic volatility model and option pricing," Papers 1806.06883, arXiv.org.
    2. Zorana Grbac & David Krief & Peter Tankov, 2018. "Long-time trajectorial large deviations for affine stochastic volatility models and application to variance reduction for option pricing," Papers 1809.06153, arXiv.org.
    3. Genin, Adrien & Tankov, Peter, 2020. "Optimal importance sampling for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 20-46.
    4. Adrien Genin & Peter Tankov, 2016. "Optimal importance sampling for L\'evy Processes," Papers 1608.04621, arXiv.org.
    5. dos Reis, Gonçalo & Smith, Greig & Tankov, Peter, 2023. "Importance sampling for McKean-Vlasov SDEs," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    6. Robertson, Scott, 2010. "Sample path Large Deviations and optimal importance sampling for stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 66-83, January.
    7. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
    8. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    9. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    10. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    11. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    12. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    13. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    14. Chen, An & Hieber, Peter & Sureth, Caren, 2022. "Pay for tax certainty? Advance tax rulings for risky investment under multi-dimensional tax uncertainty," arqus Discussion Papers in Quantitative Tax Research 273, arqus - Arbeitskreis Quantitative Steuerlehre.
    15. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    16. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    17. Cui, Yiran & del Baño Rollin, Sebastian & Germano, Guido, 2017. "Full and fast calibration of the Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 263(2), pages 625-638.
    18. Detlefsen, Kai & Härdle, Wolfgang Karl, 2006. "Forecasting the term structure of variance swaps," SFB 649 Discussion Papers 2006-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Söderlind, Paul, 2009. "The C-CAPM without ex post data," Journal of Macroeconomics, Elsevier, vol. 31(4), pages 721-729, December.
    20. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03899237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.