IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v112y2004i2p201-223.html
   My bibliography  Save this article

Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme

Author

Listed:
  • Gobet, Emmanuel
  • Menozzi, Stéphane

Abstract

We are interested in approximating a multidimensional hypoelliptic diffusion process (Xt)t[greater-or-equal, slanted]0 killed when it leaves a smooth domain D. When a discrete Euler scheme with time step h is used, we prove under a noncharacteristic boundary condition that the weak error is upper bounded by , generalizing the result obtained by Gobet in (Stoch. Proc. Appl. 87 (2000) 167) for the uniformly elliptic case. We also obtain a lower bound with the same rate , thus proving that the order of convergence is exactly 1/2. This provides a theoretical explanation of the well-known bias that we can numerically observe in that kind of procedure.

Suggested Citation

  • Gobet, Emmanuel & Menozzi, Stéphane, 2004. "Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 201-223, August.
  • Handle: RePEc:eee:spapps:v:112:y:2004:i:2:p:201-223
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00040-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paolo Baldi & Lucia Caramellino & Maria Gabriella Iovino, 1999. "Pricing General Barrier Options: A Numerical Approach Using Sharp Large Deviations," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 293-321, October.
    2. BALLY Vlad & TALAY Denis, 1996. "The Law of the Euler Scheme for Stochastic Differential Equations: II. Convergence Rate of the Density," Monte Carlo Methods and Applications, De Gruyter, vol. 2(2), pages 93-128, December.
    3. Alsmeyer, Gerold, 1994. "On the Markov renewal theorem," Stochastic Processes and their Applications, Elsevier, vol. 50(1), pages 37-56, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aurélien Alfonsi & Benjamin Jourdain & Arturo Kohatsu-Higa, 2014. "Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme," Post-Print hal-00727430, HAL.
    2. Pagès Gilles, 2007. "Multi-step Richardson-Romberg Extrapolation: Remarks on Variance Control and Complexity," Monte Carlo Methods and Applications, De Gruyter, vol. 13(1), pages 37-70, April.
    3. Lucia Caramellino & Barbara Pacchiarotti & Simone Salvadei, 2015. "Large Deviation Approaches for the Numerical Computation of the Hitting Probability for Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 383-401, June.
    4. repec:hal:wpaper:hal-00727430 is not listed on IDEAS
    5. Cetin, Umut, 2018. "Diffusion transformations, Black-Scholes equation and optimal stopping," LSE Research Online Documents on Economics 87261, London School of Economics and Political Science, LSE Library.
    6. Emmanuel Gobet, 2009. "Advanced Monte Carlo methods for barrier and related exotic options," Post-Print hal-00319947, HAL.
    7. Lejay, Antoine & Maire, Sylvain, 2007. "Computing the principal eigenvalue of the Laplace operator by a stochastic method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 73(6), pages 351-363.
    8. Gobet, Emmanuel & Menozzi, Stéphane, 2010. "Stopped diffusion processes: Boundary corrections and overshoot," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 130-162, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    2. Anna Knezevic & Nikolai Dokuchaev, 2019. "Approximating intractable short ratemodel distribution with neural network," Papers 1912.12615, arXiv.org, revised Apr 2024.
    3. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
    4. Pingjin Deng & Xiufang Li, 2017. "Barrier Options Pricing With Joint Distribution Of Gaussian Process And Its Maximum," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-18, September.
    5. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    6. Ralf Sabiwalsky, 2010. "Nonlinear modelling of target leverage with latent determinant variables — new evidence on the trade‐off theory," Review of Financial Economics, John Wiley & Sons, vol. 19(4), pages 137-150, October.
    7. Basrak, Bojan & Conroy, Michael & Olvera-Cravioto, Mariana & Palmowski, Zbigniew, 2022. "Importance sampling for maxima on trees," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 139-179.
    8. Sabiwalsky, Ralf, 2010. "Nonlinear modelling of target leverage with latent determinant variables -- new evidence on the trade-off theory," Review of Financial Economics, Elsevier, vol. 19(4), pages 137-150, October.
    9. Detemple, Jerome & Garcia, Rene & Rindisbacher, Marcel, 2006. "Asymptotic properties of Monte Carlo estimators of diffusion processes," Journal of Econometrics, Elsevier, vol. 134(1), pages 1-68, September.
    10. Kebaier, Ahmed & Kohatsu-Higa, Arturo, 2008. "An optimal control variance reduction method for density estimation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2143-2180, December.
    11. He, Kai & Ren, Jiagang & Zhang, Hua, 2014. "Localization of Wiener functionals of fractional regularity and applications," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2543-2582.
    12. Brandt, Michael W. & Santa-Clara, Pedro, 2002. "Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets," Journal of Financial Economics, Elsevier, vol. 63(2), pages 161-210, February.
    13. Alsmeyer, Gerold & Hoefs, Volker, 2002. "Markov renewal theory for stationary (m+1)-block factors: convergence rate results," Stochastic Processes and their Applications, Elsevier, vol. 98(1), pages 77-112, March.
    14. Keegan Mendonca & Vasileios E. Kontosakos & Athanasios A. Pantelous & Konstantin M. Zuev, 2018. "Efficient Pricing of Barrier Options on High Volatility Assets using Subset Simulation," Papers 1803.03364, arXiv.org, revised Mar 2018.
    15. Angelos Dassios & Luting Li, 2018. "Explicit Asymptotics on First Passage Times of Diffusion Processes," Papers 1806.08161, arXiv.org.
    16. Martin Becker, 2010. "Exact simulation of final, minimal and maximal values of Brownian motion and jump-diffusions with applications to option pricing," Computational Management Science, Springer, vol. 7(1), pages 1-17, January.
    17. Dmitry Korshunov, 2008. "The Key Renewal Theorem for a Transient Markov Chain," Journal of Theoretical Probability, Springer, vol. 21(1), pages 234-245, March.
    18. Dassios, Angelos & Li, Luting, 2020. "Explicit asymptotic on first passage times of diffusion processes," LSE Research Online Documents on Economics 103087, London School of Economics and Political Science, LSE Library.
    19. Hanbyeol Jang & Sangkwon Kim & Junhee Han & Seongjin Lee & Jungyup Ban & Hyunsoo Han & Chaeyoung Lee & Darae Jeong & Junseok Kim, 2020. "Fast Monte Carlo Simulation for Pricing Equity-Linked Securities," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 865-882, December.
    20. Rubenthaler, Sylvain, 2003. "Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 311-349, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:112:y:2004:i:2:p:201-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.