IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v290y2021i1p313-330.html
   My bibliography  Save this article

Pricing discretely-monitored double barrier options with small probabilities of execution

Author

Listed:
  • Kontosakos, Vasileios E.
  • Mendonca, Keegan
  • Pantelous, Athanasios A.
  • Zuev, Konstantin M.

Abstract

In this paper, we propose a new stochastic simulation-based methodology for pricing discretely-monitored double barrier options and estimating the corresponding probabilities of execution. We develop our framework by employing a versatile tool for the estimation of rare event probabilities known as subset simulation algorithm. In this regard, considering plausible dynamics for the price evolution of the underlying asset, we are able to compare and demonstrate clearly that our treatment always outperforms the standard Monte Carlo approach and becomes substantially more efficient (measured in terms of the sample coefficient of variation) when the underlying asset has high volatility and the barriers are set close to the spot price of the underlying asset. In addition, we test and report that our approach performs better when it is compared to the multilevel Monte Carlo method for special cases of barrier options and underlying assets that make the pricing problem a rare event estimation. These theoretical findings are confirmed by numerous simulation results.

Suggested Citation

  • Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
  • Handle: RePEc:eee:ejores:v:290:y:2021:i:1:p:313-330
    DOI: 10.1016/j.ejor.2020.07.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720306706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.07.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Glasserman & Jeremy Staum, 2001. "Conditioning on One-Step Survival for Barrier Option Simulations," Operations Research, INFORMS, vol. 49(6), pages 923-937, December.
    2. C. F. Lo & H. C. Lee & C. H. Hui, 2003. "A simple approach for pricing barrier options with time-dependent parameters," Quantitative Finance, Taylor & Francis Journals, vol. 3(2), pages 98-107.
    3. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    4. Cui, Yiran & del Baño Rollin, Sebastian & Germano, Guido, 2017. "Full and fast calibration of the Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 263(2), pages 625-638.
    5. Wim Schoutens & Stijn Symens, 2003. "The Pricing Of Exotic Options By Monte–Carlo Simulations In A Lévy Market With Stochastic Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(08), pages 839-864.
    6. Lian, Guanghua & Zhu, Song-Ping & Elliott, Robert J. & Cui, Zhenyu, 2017. "Semi-analytical valuation for discrete barrier options under time-dependent Lévy processes," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 167-183.
    7. Fusai, Gianluca & Germano, Guido & Marazzina, Daniele, 2016. "Spitzer identity, Wiener-Hopf factorization and pricing of discretely monitored exotic options," European Journal of Operational Research, Elsevier, vol. 251(1), pages 124-134.
    8. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    9. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    10. Marc Jeannin & Martijn Pistorius, 2010. "A transform approach to compute prices and Greeks of barrier options driven by a class of Levy processes," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 629-644.
    11. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    12. Bandi, Chaithanya & Bertsimas, Dimitris, 2014. "Robust option pricing," European Journal of Operational Research, Elsevier, vol. 239(3), pages 842-853.
    13. Hélyette Geman & Marc Yor, 1996. "Pricing And Hedging Double‐Barrier Options: A Probabilistic Approach," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 365-378, October.
    14. Gianluca Fusai & I. Abrahams & Carlo Sgarra, 2006. "An exact analytical solution for discrete barrier options," Finance and Stochastics, Springer, vol. 10(1), pages 1-26, January.
    15. Carolyn E. Phelan & Daniele Marazzina & Gianluca Fusai & Guido Germano, 2019. "Hilbert transform, spectral filters and option pricing," Annals of Operations Research, Springer, vol. 282(1), pages 273-298, November.
    16. Boyle, Phelim P. & Tian, Yisong “Sam”, 1999. "Pricing Lookback and Barrier Options under the CEV Process," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 241-264, June.
    17. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    18. Paolo Baldi & Lucia Caramellino & Maria Gabriella Iovino, 1999. "Pricing General Barrier Options: A Numerical Approach Using Sharp Large Deviations," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 293-321, October.
    19. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    20. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin & Tim Zajic, 1999. "Multilevel Splitting for Estimating Rare Event Probabilities," Operations Research, INFORMS, vol. 47(4), pages 585-600, August.
    21. Mark Broadie & Paul Glasserman & Steven Kou, 1997. "A Continuity Correction for Discrete Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 325-349, October.
    22. A. Golbabai & L. Ballestra & D. Ahmadian, 2014. "A Highly Accurate Finite Element Method to Price Discrete Double Barrier Options," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 153-173, August.
    23. Phelan, Carolyn E. & Marazzina, Daniele & Fusai, Gianluca & Germano, Guido, 2018. "Fluctuation identities with continuous monitoring and their application to the pricing of barrier options," European Journal of Operational Research, Elsevier, vol. 271(1), pages 210-223.
    24. Dmitry Davydov & Vadim Linetsky, 2001. "Pricing and Hedging Path-Dependent Options Under the CEV Process," Management Science, INFORMS, vol. 47(7), pages 949-965, July.
    25. Peter Buchen & Otto Konstandatos, 2009. "A New Approach to Pricing Double-Barrier Options with Arbitrary Payoffs and Exponential Boundaries," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(6), pages 497-515.
    26. C. E. Phelan & D. Marazzina & G. Germano, 2020. "Pricing methods for α-quantile and perpetual early exercise options based on Spitzer identities," Quantitative Finance, Taylor & Francis Journals, vol. 20(6), pages 899-918, June.
    27. Fusai, Gianluca & Recchioni, Maria Cristina, 2007. "Analysis of quadrature methods for pricing discrete barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 826-860, March.
    28. Zvan, R. & Vetzal, K. R. & Forsyth, P. A., 2000. "PDE methods for pricing barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1563-1590, October.
    29. Sesana, Debora & Marazzina, Daniele & Fusai, Gianluca, 2014. "Pricing exotic derivatives exploiting structure," European Journal of Operational Research, Elsevier, vol. 236(1), pages 369-381.
    30. Phelim Boyle & Yisong Tian, 1998. "An explicit finite difference approach to the pricing of barrier options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(1), pages 17-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sangkwon Kim & Jisang Lyu & Wonjin Lee & Eunchae Park & Hanbyeol Jang & Chaeyoung Lee & Junseok Kim, 2024. "A Practical Monte Carlo Method for Pricing Equity-Linked Securities with Time-Dependent Volatility and Interest Rate," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2069-2086, May.
    2. Hussain, Sultan & Arif, Hifsa & Noorullah, Muhammad & Pantelous, Athanasios A., 2023. "Pricing American Options under Azzalini Ito-McKean Skew Brownian Motions," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    3. Cho, Junhyun & Kim, Yejin & Lee, Sungchul, 2022. "An accurate and stable numerical method for option hedge parameters," Applied Mathematics and Computation, Elsevier, vol. 430(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keegan Mendonca & Vasileios E. Kontosakos & Athanasios A. Pantelous & Konstantin M. Zuev, 2018. "Efficient Pricing of Barrier Options on High Volatility Assets using Subset Simulation," Papers 1803.03364, arXiv.org, revised Mar 2018.
    2. Lian, Guanghua & Zhu, Song-Ping & Elliott, Robert J. & Cui, Zhenyu, 2017. "Semi-analytical valuation for discrete barrier options under time-dependent Lévy processes," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 167-183.
    3. Xie, Fei & He, Zhijian & Wang, Xiaoqun, 2019. "An importance sampling-based smoothing approach for quasi-Monte Carlo simulation of discrete barrier options," European Journal of Operational Research, Elsevier, vol. 274(2), pages 759-772.
    4. C. E. Phelan & D. Marazzina & G. Germano, 2020. "Pricing methods for α-quantile and perpetual early exercise options based on Spitzer identities," Quantitative Finance, Taylor & Francis Journals, vol. 20(6), pages 899-918, June.
    5. Detemple, Jérôme & Laminou Abdou, Souleymane & Moraux, Franck, 2020. "American step options," European Journal of Operational Research, Elsevier, vol. 282(1), pages 363-385.
    6. Rahman Farnoosh & Hamidreza Rezazadeh & Amirhossein Sobhani & M. Hossein Beheshti, 2016. "A Numerical Method for Discrete Single Barrier Option Pricing with Time-Dependent Parameters," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 131-145, June.
    7. A. Golbabai & L. Ballestra & D. Ahmadian, 2014. "A Highly Accurate Finite Element Method to Price Discrete Double Barrier Options," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 153-173, August.
    8. Phelan, Carolyn E. & Marazzina, Daniele & Fusai, Gianluca & Germano, Guido, 2018. "Fluctuation identities with continuous monitoring and their application to the pricing of barrier options," European Journal of Operational Research, Elsevier, vol. 271(1), pages 210-223.
    9. Min Huang & Guo Luo, 2019. "A simple and efficient numerical method for pricing discretely monitored early-exercise options," Papers 1905.13407, arXiv.org, revised Jun 2019.
    10. Carolyn E. Phelan & Daniele Marazzina & Gianluca Fusai & Guido Germano, 2017. "Fluctuation identities with continuous monitoring and their application to price barrier options," Papers 1712.00077, arXiv.org.
    11. Vidal Nunes, João Pedro & Ruas, João Pedro & Dias, José Carlos, 2015. "Pricing and static hedging of American-style knock-in options on defaultable stocks," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 343-360.
    12. Zhang, Meihui & Jia, Jinhong & Zheng, Xiangcheng, 2023. "Numerical approximation and fast implementation to a generalized distributed-order time-fractional option pricing model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Vidal Nunes, João Pedro & Ruas, João Pedro & Dias, José Carlos, 2020. "Early exercise boundaries for American-style knock-out options," European Journal of Operational Research, Elsevier, vol. 285(2), pages 753-766.
    14. Fusai, Gianluca & Recchioni, Maria Cristina, 2007. "Analysis of quadrature methods for pricing discrete barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 826-860, March.
    15. Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Lookback Option Pricing under Markov Models," Papers 2112.00439, arXiv.org.
    16. Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    17. Carolyn E. Phelan & Daniele Marazzina & Guido Germano, 2021. "Pricing methods for $\alpha$-quantile and perpetual early exercise options based on Spitzer identities," Papers 2106.06030, arXiv.org.
    18. Huang, Min & Luo, Guo, 2022. "A simple and efficient numerical method for pricing discretely monitored early-exercise options," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    19. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun & Zhang, Yue, 2019. "Pricing discrete barrier options under jump-diffusion model with liquidity risk," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 347-368.
    20. Fusai, Gianluca & Germano, Guido & Marazzina, Daniele, 2016. "Spitzer identity, Wiener-Hopf factorization and pricing of discretely monitored exotic options," European Journal of Operational Research, Elsevier, vol. 251(1), pages 124-134.

    More about this item

    Keywords

    Simulation; Barrier options pricing; Rare event; Path–dependent derivatives; Discrete monitoring;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:290:y:2021:i:1:p:313-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.