IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v118y2008i12p2143-2180.html
   My bibliography  Save this article

An optimal control variance reduction method for density estimation

Author

Listed:
  • Kebaier, Ahmed
  • Kohatsu-Higa, Arturo

Abstract

We study the problem of density estimation of a non-degenerate diffusion using kernel functions. Thanks to Malliavin calculus techniques, we obtain an expansion of the discretization error. Then, we introduce a new control variate method in order to reduce the variance in the density estimation. We prove a stable law convergence theorem of the type obtained in Jacod-Kurtz-Protter for the first Malliavin derivative of the error process, which leads us to get a CLT for the new control variate algorithm. This CLT gives us a precise description of the optimal parameters of the method.

Suggested Citation

  • Kebaier, Ahmed & Kohatsu-Higa, Arturo, 2008. "An optimal control variance reduction method for density estimation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2143-2180, December.
  • Handle: RePEc:eee:spapps:v:118:y:2008:i:12:p:2143-2180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00014-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arturo Kohatsu & Roger Pettersson, 2002. "Variance reduction methods for simulation of densities on Wiener space," Economics Working Papers 597, Department of Economics and Business, Universitat Pompeu Fabra.
    2. BALLY Vlad & TALAY Denis, 1996. "The Law of the Euler Scheme for Stochastic Differential Equations: II. Convergence Rate of the Density," Monte Carlo Methods and Applications, De Gruyter, vol. 2(2), pages 93-128, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delong, Lukasz & Imkeller, Peter, 2010. "On Malliavin's differentiability of BSDEs with time delayed generators driven by Brownian motions and Poisson random measures," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1748-1775, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guyon, Julien, 2006. "Euler scheme and tempered distributions," Stochastic Processes and their Applications, Elsevier, vol. 116(6), pages 877-904, June.
    2. Anna Knezevic & Nikolai Dokuchaev, 2019. "Approximating intractable short ratemodel distribution with neural network," Papers 1912.12615, arXiv.org, revised Apr 2024.
    3. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    4. Abbas-Turki Lokman A. & Bouselmi Aych I. & Mikou Mohammed A., 2014. "Toward a coherent Monte Carlo simulation of CVA," Monte Carlo Methods and Applications, De Gruyter, vol. 20(3), pages 195-216, September.
    5. Hans‐Peter Bermin & Arturo Kohatsu‐Higa & Miquel Montero, 2003. "Local Vega Index and Variance Reduction Methods," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 85-97, January.
    6. Gobet, Emmanuel & Menozzi, Stéphane, 2004. "Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 201-223, August.
    7. Detemple, Jerome & Garcia, Rene & Rindisbacher, Marcel, 2006. "Asymptotic properties of Monte Carlo estimators of diffusion processes," Journal of Econometrics, Elsevier, vol. 134(1), pages 1-68, September.
    8. He, Kai & Ren, Jiagang & Zhang, Hua, 2014. "Localization of Wiener functionals of fractional regularity and applications," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2543-2582.
    9. Brandt, Michael W. & Santa-Clara, Pedro, 2002. "Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets," Journal of Financial Economics, Elsevier, vol. 63(2), pages 161-210, February.
    10. Pagès Gilles, 2007. "Multi-step Richardson-Romberg Extrapolation: Remarks on Variance Control and Complexity," Monte Carlo Methods and Applications, De Gruyter, vol. 13(1), pages 37-70, April.
    11. Bouleau Nicolas, 2005. "Dirichlet Forms in Simulation," Monte Carlo Methods and Applications, De Gruyter, vol. 11(4), pages 385-395, December.
    12. Gobet, Emmanuel & Labart, Céline, 2007. "Error expansion for the discretization of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 803-829, July.
    13. Rubenthaler, Sylvain, 2003. "Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 311-349, February.
    14. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
    15. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    16. Christophe Berthelot & Mireille Bossy & Nathalie Pistre, 2001. "Risque associé au contrat d'assurance-vie pour la compagnie d'assurance," Économie et Prévision, Programme National Persée, vol. 149(3), pages 73-85.
    17. Talay, Denis & Zheng, Ziyu, 2004. "Approximation of quantiles of components of diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 23-46, January.
    18. Arturo Kohatsu & Montero Miquel, 2003. "Malliavin calculus in finance," Economics Working Papers 672, Department of Economics and Business, Universitat Pompeu Fabra.
    19. Moez Mrad & Nizar Touzi & Amina Zeghal, 2006. "Monte Carlo Estimation of a Joint Density Using Malliavin Calculus, and Application to American Options," Computational Economics, Springer;Society for Computational Economics, vol. 27(4), pages 497-531, June.
    20. Nicola Cufaro Petroni & Piergiacomo Sabino, 2013. "Multidimensional quasi-Monte Carlo Malliavin Greeks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 36(2), pages 199-224, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:118:y:2008:i:12:p:2143-2180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.