IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v7y2010i1p1-17.html
   My bibliography  Save this article

Exact simulation of final, minimal and maximal values of Brownian motion and jump-diffusions with applications to option pricing

Author

Listed:
  • Martin Becker

Abstract

No abstract is available for this item.

Suggested Citation

  • Martin Becker, 2010. "Exact simulation of final, minimal and maximal values of Brownian motion and jump-diffusions with applications to option pricing," Computational Management Science, Springer, vol. 7(1), pages 1-17, January.
  • Handle: RePEc:spr:comgts:v:7:y:2010:i:1:p:1-17
    DOI: 10.1007/s10287-007-0065-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-007-0065-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-007-0065-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    2. Martin Becker & Ralph Friedmann & Stefan Klößner & Walter Sanddorf-Köhle, 2007. "A Hausman test for Brownian motion," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 91(1), pages 3-21, March.
    3. Michael W. Brandt & Francis X. Diebold, 2006. "A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations," The Journal of Business, University of Chicago Press, vol. 79(1), pages 61-74, January.
    4. Beckers, Stan, 1983. "Variances of Security Price Returns Based on High, Low, and Closing Prices," The Journal of Business, University of Chicago Press, vol. 56(1), pages 97-112, January.
    5. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    6. Ball, Clifford A & Torous, Walter N, 1984. "The Maximum Likelihood Estimation of Security Price Volatility: Theory, Evidence, and Application to Option Pricing," The Journal of Business, University of Chicago Press, vol. 57(1), pages 97-112, January.
    7. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    8. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    9. Hélyette Geman & Marc Yor, 1996. "Pricing And Hedging Double‐Barrier Options: A Probabilistic Approach," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 365-378, October.
    10. Paolo Baldi & Lucia Caramellino & Maria Gabriella Iovino, 1999. "Pricing General Barrier Options: A Numerical Approach Using Sharp Large Deviations," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 293-321, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klößner, Stefan & Becker, Martin & Friedmann, Ralph, 2012. "Modeling and measuring intraday overreaction of stock prices," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1152-1163.
    2. Ren Jiandong, 2016. "On the Use of Long-Term Risk Measures as an Approach to Communicating Risks," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 10(1), pages 45-55, January.
    3. Runhuan Feng & Peng Li, 2021. "Sample Recycling Method -- A New Approach to Efficient Nested Monte Carlo Simulations," Papers 2106.06028, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013. "On the predictability of stock prices: A case for high and low prices," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
    3. Jin-Huei Yeh & Jying-Nan Wang & Chung-Ming Kuan, 2014. "A noise-robust estimator of volatility based on interquantile ranges," Review of Quantitative Finance and Accounting, Springer, vol. 43(4), pages 751-779, November.
    4. Lakshmi Padmakumari & S. Maheswaran, 2018. "Covariance estimation using random permutations," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-21, March.
    5. Awartani, Basel & Maghyereh, Aktham Issa, 2013. "Dynamic spillovers between oil and stock markets in the Gulf Cooperation Council Countries," Energy Economics, Elsevier, vol. 36(C), pages 28-42.
    6. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    7. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.
    8. repec:grm:ecoyun:201716 is not listed on IDEAS
    9. Kumar, Dilip & Maheswaran, S., 2013. "Detecting sudden changes in volatility estimated from high, low and closing prices," Economic Modelling, Elsevier, vol. 31(C), pages 484-491.
    10. Vortelinos, Dimitrios I., 2014. "Optimally sampled realized range-based volatility estimators," Research in International Business and Finance, Elsevier, vol. 30(C), pages 34-50.
    11. Martens, Martin & van Dijk, Dick, 2007. "Measuring volatility with the realized range," Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
    12. Padmakumari, Lakshmi & S., Maheswaran, 2017. "A new statistic to capture the level dependence in stock price volatility," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 355-362.
    13. Richard D. F. Harris & Murat Mazibas, 2022. "A component Markov regime‐switching autoregressive conditional range model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 650-683, April.
    14. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    15. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    16. L. C. G. Rogers & Fanyin Zhou, 2008. "Estimating correlation from high, low, opening and closing prices," Papers 0804.0162, arXiv.org.
    17. Lakshmi Padmakumari & S Maheswaran, 2016. "A Regression Based Approach to Capturing the Level Dependence in the Volatility of Stock Returns," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(12), pages 706-718, December.
    18. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    19. Tan, Shay-Kee & Ng, Kok-Haur & Chan, Jennifer So-Kuen & Mohamed, Ibrahim, 2019. "Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 537-551.
    20. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2001. "High- and Low-Frequency Exchange Rate Volatility Dynamics: Range-Based Estimation of Stochastic Volatility Models," NBER Working Papers 8162, National Bureau of Economic Research, Inc.
    21. Michael W. Brandt & Francis X. Diebold, 2006. "A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations," The Journal of Business, University of Chicago Press, vol. 79(1), pages 61-74, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:7:y:2010:i:1:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.