IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v17y2015i2d10.1007_s11009-013-9364-5.html
   My bibliography  Save this article

Large Deviation Approaches for the Numerical Computation of the Hitting Probability for Gaussian Processes

Author

Listed:
  • Lucia Caramellino

    (Università di Roma Tor Vergata)

  • Barbara Pacchiarotti

    (Università di Roma Tor Vergata)

  • Simone Salvadei

    (Università di Roma Tor Vergata, SEFEMEQ)

Abstract

We state large deviations for small time of a pinned n-conditional Gaussian process, i.e. the bridge of a Gaussian process conditioned to stay in n fixed points at n fixed past instants, by letting all the past monitoring instants to depend on the small parameter going to 0. Differently from what already developed in Caramellino and Pacchiarotti (Adv Appl Probab 40:424–453, 2008), this procedure is able to catch the dependence on the past observations. We apply the results to numerical experiments that involve the fractional Brownian motion, for the computation of the hitting probability through Monte Carlo methods.

Suggested Citation

  • Lucia Caramellino & Barbara Pacchiarotti & Simone Salvadei, 2015. "Large Deviation Approaches for the Numerical Computation of the Hitting Probability for Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 383-401, June.
  • Handle: RePEc:spr:metcap:v:17:y:2015:i:2:d:10.1007_s11009-013-9364-5
    DOI: 10.1007/s11009-013-9364-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-013-9364-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-013-9364-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gobet, Emmanuel, 2000. "Weak approximation of killed diffusion using Euler schemes," Stochastic Processes and their Applications, Elsevier, vol. 87(2), pages 167-197, June.
    2. Paolo Baldi & Lucia Caramellino & Maria Gabriella Iovino, 1999. "Pricing General Barrier Options: A Numerical Approach Using Sharp Large Deviations," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 293-321, October.
    3. Gobet, Emmanuel & Menozzi, Stéphane, 2004. "Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 201-223, August.
    4. Mandjes, Michel & Mannersalo, Petteri & Norros, Ilkka & van Uitert, Miranda, 2006. "Large deviations of infinite intersections of events in Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 116(9), pages 1269-1293, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miriana Cellupica & Barbara Pacchiarotti, 2021. "Pathwise Asymptotics for Volterra Type Stochastic Volatility Models," Journal of Theoretical Probability, Springer, vol. 34(2), pages 682-727, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cetin, Umut, 2018. "Diffusion transformations, Black-Scholes equation and optimal stopping," LSE Research Online Documents on Economics 87261, London School of Economics and Political Science, LSE Library.
    2. Lejay, Antoine & Maire, Sylvain, 2007. "Computing the principal eigenvalue of the Laplace operator by a stochastic method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 73(6), pages 351-363.
    3. Aurélien Alfonsi & Benjamin Jourdain & Arturo Kohatsu-Higa, 2014. "Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme," Post-Print hal-00727430, HAL.
    4. Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.
    5. Gobet, Emmanuel & Menozzi, Stéphane, 2010. "Stopped diffusion processes: Boundary corrections and overshoot," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 130-162, February.
    6. Pagès Gilles, 2007. "Multi-step Richardson-Romberg Extrapolation: Remarks on Variance Control and Complexity," Monte Carlo Methods and Applications, De Gruyter, vol. 13(1), pages 37-70, April.
    7. Baldi, Paolo & Caramellino, Lucia & Rossi, Maurizia, 2020. "Large deviations of conditioned diffusions and applications," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1289-1308.
    8. Dassios, Angelos & Li, Luting, 2020. "Explicit asymptotic on first passage times of diffusion processes," LSE Research Online Documents on Economics 103087, London School of Economics and Political Science, LSE Library.
    9. Emmanuel Gobet, 2009. "Advanced Monte Carlo methods for barrier and related exotic options," Post-Print hal-00319947, HAL.
    10. Hanbyeol Jang & Sangkwon Kim & Junhee Han & Seongjin Lee & Jungyup Ban & Hyunsoo Han & Chaeyoung Lee & Darae Jeong & Junseok Kim, 2020. "Fast Monte Carlo Simulation for Pricing Equity-Linked Securities," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 865-882, December.
    11. Casella, Bruno & Roberts, Gareth O., 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," MPRA Paper 95217, University Library of Munich, Germany.
    12. Hoel Håkon & von Schwerin Erik & Szepessy Anders & Tempone Raúl, 2014. "Implementation and analysis of an adaptive multilevel Monte Carlo algorithm," Monte Carlo Methods and Applications, De Gruyter, vol. 20(1), pages 1-41, March.
    13. Diana Dorobantu & Yahia Salhi & Pierre-Emmanuel Thérond, 2018. "Modelling net carrying amount of shares for market consistent valuation of life insurance liabilities," Working Papers hal-01840057, HAL.
    14. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    15. Braunsteins, Peter & Mandjes, Michel, 2023. "The Cramér-Lundberg model with a fluctuating number of clients," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 1-22.
    16. Martin Zubeldia & Michel Mandjes, 2021. "Large deviations for acyclic networks of queues with correlated Gaussian inputs," Queueing Systems: Theory and Applications, Springer, vol. 98(3), pages 333-371, August.
    17. Bruno Casella & Gareth O. Roberts, 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 449-473, September.
    18. repec:hal:wpaper:hal-00400666 is not listed on IDEAS
    19. Madalina Deaconu & Samuel Herrmann, 2023. "Strong Approximation of Bessel Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    20. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
    21. Amirhossein Sobhani & Mariyan Milev, 2017. "A Numerical Method for Pricing Discrete Double Barrier Option by Legendre Multiwavelet," Papers 1703.09129, arXiv.org, revised Mar 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:17:y:2015:i:2:d:10.1007_s11009-013-9364-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.