IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v2y1996i2p93-128n7.html
   My bibliography  Save this article

The Law of the Euler Scheme for Stochastic Differential Equations: II. Convergence Rate of the Density

Author

Listed:
  • BALLY Vlad
  • TALAY Denis

Abstract

No abstract is available for this item.

Suggested Citation

  • BALLY Vlad & TALAY Denis, 1996. "The Law of the Euler Scheme for Stochastic Differential Equations: II. Convergence Rate of the Density," Monte Carlo Methods and Applications, De Gruyter, vol. 2(2), pages 93-128, December.
  • Handle: RePEc:bpj:mcmeap:v:2:y:1996:i:2:p:93-128:n:7
    DOI: 10.1515/mcma.1996.2.2.93
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma.1996.2.2.93
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma.1996.2.2.93?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bally, Vlad & Talay, Denis, 1995. "The Euler scheme for stochastic differential equations: error analysis with Malliavin calculus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 38(1), pages 35-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brandt, Michael W. & Santa-Clara, Pedro, 2002. "Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets," Journal of Financial Economics, Elsevier, vol. 63(2), pages 161-210, February.
    2. Gobet, Emmanuel, 2000. "Weak approximation of killed diffusion using Euler schemes," Stochastic Processes and their Applications, Elsevier, vol. 87(2), pages 167-197, June.
    3. Rubenthaler, Sylvain, 2003. "Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 311-349, February.
    4. repec:hal:wpaper:hal-00727430 is not listed on IDEAS
    5. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
    6. Gobet, Emmanuel & Menozzi, Stéphane, 2004. "Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 201-223, August.
    7. Detemple, Jerome & Garcia, Rene & Rindisbacher, Marcel, 2006. "Asymptotic properties of Monte Carlo estimators of diffusion processes," Journal of Econometrics, Elsevier, vol. 134(1), pages 1-68, September.
    8. Masaaki Fukasawa, 2010. "Discretization error of Stochastic Integrals," Papers 1004.2107, arXiv.org.
    9. Kebaier, Ahmed & Kohatsu-Higa, Arturo, 2008. "An optimal control variance reduction method for density estimation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2143-2180, December.
    10. Anna Knezevic & Nikolai Dokuchaev, 2019. "Approximating intractable short ratemodel distribution with neural network," Papers 1912.12615, arXiv.org, revised Apr 2024.
    11. Christophe Berthelot & Mireille Bossy & Nathalie Pistre, 2001. "Risque associé au contrat d'assurance-vie pour la compagnie d'assurance," Économie et Prévision, Programme National Persée, vol. 149(3), pages 73-85.
    12. He, Kai & Ren, Jiagang & Zhang, Hua, 2014. "Localization of Wiener functionals of fractional regularity and applications," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2543-2582.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J.-P. Morillon, 2015. "Solving Wentzell-Dirichlet Boundary Value Problem with Superabundant Data Using Reflecting Random Walk Simulation," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 697-719, September.
    2. Wu, Shujin & Han, Dong, 2007. "Algorithmic analysis of Euler scheme for a class of stochastic differential equations with jumps," Statistics & Probability Letters, Elsevier, vol. 77(2), pages 211-219, January.
    3. Madalina Deaconu & Samuel Herrmann, 2023. "Strong Approximation of Bessel Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    4. Protter, Philip & Qiu, Lisha & Martin, Jaime San, 2020. "Asymptotic error distribution for the Euler scheme with locally Lipschitz coefficients," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2296-2311.
    5. Denis Belomestny & Tigran Nagapetyan, 2014. "Multilevel path simulation for weak approximation schemes," Papers 1406.2581, arXiv.org, revised Oct 2014.
    6. Givon, Dror & Kupferman, Raz, 2004. "White noise limits for discrete dynamical systems driven by fast deterministic dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(3), pages 385-412.
    7. Brandt, Michael W. & Santa-Clara, Pedro, 2002. "Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets," Journal of Financial Economics, Elsevier, vol. 63(2), pages 161-210, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:2:y:1996:i:2:p:93-128:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.