IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v13y2020i3p47-d328331.html
   My bibliography  Save this article

Corporate Bankruptcy Prediction Model, a Special Focus on Listed Companies in Kenya

Author

Listed:
  • Daniel Ogachi

    (Department of Finance, Szent Istvan University, 2100 Gödöllő, Hungary)

  • Richard Ndege

    (Twenty Four Secure Security Services, Nairobi 50353-00100, Kenya)

  • Peter Gaturu

    (BSS Department, Jomo Kenyatta University of Agriculture and Technology, Karen 62000-00200, Nairobi, Kenya)

  • Zeman Zoltan

    (Department of Finance, Szent Istvan University, 2100 Gödöllő, Hungary)

Abstract

Predicting bankruptcy of companies has been a hot subject of focus for many economists. The rationale for developing and predicting the financial distress of a company is to develop a predictive model used to forecast the financial condition of a company by combining several econometric variables of interest to the researcher. The study sought to introduce deep learning models for corporate bankruptcy forecasting using textual disclosures. The study constructed a comprehensive study model for predicting bankruptcy based on listed companies in Kenya. The study population included all 64 listed companies in the Nairobi Securities Exchange for ten years. Logistic analysis was used in building a model for predicting the financial distress of a company. The findings revealed that asset turnover, total asset, and working capital ratio had positive coefficients. On the other hand, inventory turnover, debt-equity ratio, debtors turnover, debt ratio, and current ratio had negative coefficients. The study concluded that inventory turnover, asset turnover, debt-equity ratio, debtors turnover, total asset, debt ratio, current ratio, and working capital ratio were the most significant ratios for predicting bankruptcy.

Suggested Citation

  • Daniel Ogachi & Richard Ndege & Peter Gaturu & Zeman Zoltan, 2020. "Corporate Bankruptcy Prediction Model, a Special Focus on Listed Companies in Kenya," JRFM, MDPI, vol. 13(3), pages 1-14, March.
  • Handle: RePEc:gam:jjrfmx:v:13:y:2020:i:3:p:47-:d:328331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/13/3/47/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/13/3/47/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arvind Shrivastava & Kuldeep Kumar & Nitin Kumar, 2018. "Business Distress Prediction Using Bayesian Logistic Model for Indian Firms," Risks, MDPI, vol. 6(4), pages 1-15, October.
    2. Nada Mselmi & Amine Lahiani & Taher Hamza, 2017. "Financial distress prediction: The case of French small and medium-sized firms," Post-Print hal-03529325, HAL.
    3. Ben Jabeur, Sami, 2017. "Bankruptcy prediction using Partial Least Squares Logistic Regression," Journal of Retailing and Consumer Services, Elsevier, vol. 36(C), pages 197-202.
    4. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    5. Maurice Mwita Range & Agnes Njeru & Gichuhi. A. Waititu, 2018. "Using Altman’s Z score (Sales/Total Assets) Ratio Model in Assessing Likelihood of Bankruptcy for Sugar Companies in Kenya," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 8(6), pages 683-703, June.
    6. Moses O. Ouma & Gabriel N. Kirori, 2019. "Evaluating the Financial Soundness of Small and Medium-Sized Commercial Banks in Kenya: An Application of the Bankometer Model," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 11(6), pages 1-93, June.
    7. Mselmi, Nada & Lahiani, Amine & Hamza, Taher, 2017. "Financial distress prediction: The case of French small and medium-sized firms," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 67-80.
    8. Šlefendorfas Gediminas, 2016. "Bankruptcy Prediction Model for Private Limited Companies of Lithuania," Ekonomika (Economics), Sciendo, vol. 95(1), pages 134-152, January.
    9. Nada Mselmi & Amine Lahiani & Taher Hamza, 2017. "Financial distress prediction: The case of French small and medium-sized firms," Post-Print hal-03380580, HAL.
    10. Svabova Lucia & Durica Marek & Podhorska Ivana, 2018. "Prediction of Default of Small Companies in the Slovak Republic," Economics and Culture, Sciendo, vol. 15(1), pages 88-95, June.
    11. Evangelos C. Charalambakis & Ian Garrett, 2019. "On corporate financial distress prediction: What can we learn from private firms in a developing economy? Evidence from Greece," Review of Quantitative Finance and Accounting, Springer, vol. 52(2), pages 467-491, February.
    12. Lin, K.C. & Dong, Xiaobo, 2018. "Corporate social responsibility engagement of financially distressed firms and their bankruptcy likelihood," Advances in accounting, Elsevier, vol. 43(C), pages 32-45.
    13. Laitinen, Erkki K. & Suvas, Arto, 2016. "Financial distress prediction in an international context: Moderating effects of Hofstede’s original cultural dimensions," Journal of Behavioral and Experimental Finance, Elsevier, vol. 9(C), pages 98-118.
    14. Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
    15. Boratyńska, Katarzyna & Grzegorzewska, Emilia, 2018. "Bankruptcy prediction in the agribusiness sector: Lessons from quantitative and qualitative approaches," Journal of Business Research, Elsevier, vol. 89(C), pages 175-181.
    16. Stewart Jones, 2017. "Corporate bankruptcy prediction: a high dimensional analysis," Review of Accounting Studies, Springer, vol. 22(3), pages 1366-1422, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria-Lenuţa Ciupac-Ulici & Daniela-Georgeta Beju & Ioan-Alin Nistor & Flaviu Pișcoran, 2023. "The impact of the Altman score on the energy sector companies," Journal of Financial Studies, Institute of Financial Studies, vol. 14(8), pages 45-56, June.
    2. Yuan Gao & Biao Jiang & Jietong Zhou, 2023. "Financial Distress Prediction For Small And Medium Enterprises Using Machine Learning Techniques," Papers 2302.12118, arXiv.org.
    3. Youssef Zizi & Amine Jamali-Alaoui & Badreddine El Goumi & Mohamed Oudgou & Abdeslam El Moudden, 2021. "An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression," Risks, MDPI, vol. 9(11), pages 1-24, November.
    4. Daitri Tiwary & Samit Paul, 2023. "Role of Bank Credit and External Commercial Borrowings in Working Capital Financing: Evidence from Indian Manufacturing Firms," JRFM, MDPI, vol. 16(11), pages 1-19, October.
    5. Richard Arhinful & Mehrshad Radmehr, 2023. "The Impact of Financial Leverage on the Financial Performance of the Firms Listed on the Tokyo Stock Exchange," SAGE Open, , vol. 13(4), pages 21582440231, November.
    6. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    7. Muhammad Ramadhani Kesuma & Felisitas Defung & Anisa Kusumawardani, 2021. "Bankruptcy Prediction And Its Effect On Stock Prices As Impact Of The COVID-19 Pandemic," Technium Social Sciences Journal, Technium Science, vol. 25(1), pages 567-582, November.
    8. Yong Sun & Hui Liu & Jiwei Liu & Mingyu Sun & Qun Li, 2023. "Analysis of Factors Influencing the Corporate Performance of Listed Companies in China’s Agriculture and Forestry Sector Based on a Panel Threshold Model," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    9. repec:fst:rfsisf:v:8:y:2023:i:special-june_2023:p:45-56 is not listed on IDEAS
    10. Antonio Pelaez-Verdet & Pilar Loscertales-Sanchez, 2021. "Key Ratios for Long-Term Prediction of Hotel Financial Distress and Corporate Default: Survival Analysis for an Economic Stagnation," Sustainability, MDPI, vol. 13(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:fst:rfsisf:v:8:y:2023:i:special-june_2023:p:45-56 is not listed on IDEAS
    2. Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
    3. Jiang, Cuiqing & Zhou, Yiru & Chen, Bo, 2023. "Mining semantic features in patent text for financial distress prediction," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    4. Maria-Lenuţa Ciupac-Ulici & Daniela-Georgeta Beju & Ioan-Alin Nistor & Flaviu Pișcoran, 2023. "The impact of the Altman score on the energy sector companies," Journal of Financial Studies, Institute of Financial Studies, vol. 14(8), pages 45-56, June.
    5. Vladislav V. Afanasev & Yulia A. Tarasova, 2022. "Default Prediction for Housing and Utilities Management Firms Using Non-Financial Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 91-110, December.
    6. ElBannan, Mona A., 2021. "On the prediction of financial distress in emerging markets: What matters more? Empirical evidence from Arab spring countries," Emerging Markets Review, Elsevier, vol. 47(C).
    7. Sanjay Sehgal & Ritesh Kumar Mishra & Ajay Jaisawal, 2021. "A search for macroeconomic determinants of corporate financial distress," Indian Economic Review, Springer, vol. 56(2), pages 435-461, December.
    8. Carmona, Pedro & Dwekat, Aladdin & Mardawi, Zeena, 2022. "No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure," Research in International Business and Finance, Elsevier, vol. 61(C).
    9. Ding, Shusheng & Cui, Tianxiang & Bellotti, Anthony Graham & Abedin, Mohammad Zoynul & Lucey, Brian, 2023. "The role of feature importance in predicting corporate financial distress in pre and post COVID periods: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 90(C).
    10. Youssef Zizi & Amine Jamali-Alaoui & Badreddine El Goumi & Mohamed Oudgou & Abdeslam El Moudden, 2021. "An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression," Risks, MDPI, vol. 9(11), pages 1-24, November.
    11. Oliver Lukason & María-del-Mar Camacho-Miñano, 2019. "Bankruptcy Risk, Its Financial Determinants and Reporting Delays: Do Managers Have Anything to Hide?," Risks, MDPI, vol. 7(3), pages 1-15, July.
    12. Fernández-Gámez, Manuel Ángel & Soria, Juan Antonio Campos & Santos, José António C. & Alaminos, David, 2020. "European country heterogeneity in financial distress prediction: An empirical analysis with macroeconomic and regulatory factors," Economic Modelling, Elsevier, vol. 88(C), pages 398-407.
    13. Oz, Ibrahim Onur & Yelkenci, Tezer & Meral, Gorkem, 2021. "The role of earnings components and machine learning on the revelation of deteriorating firm performance," International Review of Financial Analysis, Elsevier, vol. 77(C).
    14. Mselmi, Nada & Hamza, Taher & Lahiani, Amine & Shahbaz, Muhammad, 2019. "Pricing corporate financial distress: Empirical evidence from the French stock market," Journal of International Money and Finance, Elsevier, vol. 96(C), pages 13-27.
    15. Seiler, Volker & Fanenbruck, Katharina Maria, 2021. "Acceptance of digital investment solutions: The case of robo advisory in Germany," Research in International Business and Finance, Elsevier, vol. 58(C).
    16. Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    17. Alexandra Horobet & Stefania Cristina Curea & Alexandra Smedoiu Popoviciu & Cosmin-Alin Botoroga & Lucian Belascu & Dan Gabriel Dumitrescu, 2021. "Solvency Risk and Corporate Performance: A Case Study on European Retailers," JRFM, MDPI, vol. 14(11), pages 1-34, November.
    18. Bravo-Urquiza, Francisco & Moreno-Ureba, Elena, 2021. "Does compliance with corporate governance codes help to mitigate financial distress?," Research in International Business and Finance, Elsevier, vol. 55(C).
    19. Christophe Schalck & Meryem Yankol-Schalck, 2021. "Predicting French SME failures: new evidence from machine learning techniques," Applied Economics, Taylor & Francis Journals, vol. 53(51), pages 5948-5963, November.
    20. Pham, Tho & Talavera, Oleksandr & Wood, Geoffrey & Yin, Shuxing, 2022. "Quality of working environment and corporate financial distress," Finance Research Letters, Elsevier, vol. 46(PB).
    21. Khoja, Layla & Chipulu, Maxwell & Jayasekera, Ranadeva, 2019. "Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data," International Review of Financial Analysis, Elsevier, vol. 66(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:13:y:2020:i:3:p:47-:d:328331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.