IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v101y2019icp885-896.html
   My bibliography  Save this article

Anticipating bank distress in the Eurozone: An Extreme Gradient Boosting approach

Author

Listed:
  • Climent, Francisco
  • Momparler, Alexandre
  • Carmona, Pedro

Abstract

The banking sector plays a special role in the economy and has critical functions which are essential for economic stability. Hence, systemic banking crises disrupt financial markets and hinder global economic growth. In this study, Extreme Gradient Boosting, a state of the art machine learning method, is applied to identify a set of key leading indicators that may help predict and prevent bank failure in the Eurozone banking sector. The cross-sectional data used in this study consists of 25 annual financial ratio series for commercial banks in the Eurozone. The sample includes Eurozone listed failed and non-failed banks for the period 2006–2016. A number of early warning systems and leading indicator models have been developed to prevent bank failure. Yet the breadth and depth of the recent financial crisis indicates that these methods must improve if they are to serve as a useful tool for regulators and managers of financial institutions. Our goal is to build a classification model to determine which variables should be monitored to anticipate bank financial distress. A set of key variables are identified to anticipate bank defaults. Identifying leading indicators of bank failure is necessary so that regulators and financial institutions' management can take preventive and corrective measures before it is too late.

Suggested Citation

  • Climent, Francisco & Momparler, Alexandre & Carmona, Pedro, 2019. "Anticipating bank distress in the Eurozone: An Extreme Gradient Boosting approach," Journal of Business Research, Elsevier, vol. 101(C), pages 885-896.
  • Handle: RePEc:eee:jbrese:v:101:y:2019:i:c:p:885-896
    DOI: 10.1016/j.jbusres.2018.11.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296318305678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2018.11.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:101:y:2019:i:c:p:885-896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.