IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v82y2022icp241-260.html
   My bibliography  Save this article

Estimating tail-risk using semiparametric conditional variance with an application to meme stocks

Author

Listed:
  • d’Addona, Stefano
  • Khanom, Najrin

Abstract

In this paper, we propose using Mishra, Su, Ullah’s (2010) semiparametric variance to estimate Value at Risk (VaR) and Expected Shortfall (ES). Although the variance estimate is established in the literature, it has not been applied to VaR and ES estimation. Here the returns’ variance is estimated using Mishra, Su, Ullah’s (2010) conditional semiparametric estimator, and the standardized residuals’ distribution is fitted nonparametrically. In order to reduce possible misspecification bias, the proposed estimators decouple the assumption of the returns’ distribution and the variance estimation. Empirical and simulated data are used to compare the performance of the new estimators against existing parametric and nonparametric VaR and ES models, both conditional and unconditional. The estimators are further applied to daily returns of certain meme stocks to estimate tail risk and test the performance of the estimators during periods of extreme volatility. Compared to the models studied, the proposed conditional, semiparametric VaR model produces fewer violations, and violations without a recognizable pattern - upholding the regulatory requirements. The expected shortfall estimated by the conditional, semiparametric model is also closest to the observed mean of the violations.

Suggested Citation

  • d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
  • Handle: RePEc:eee:reveco:v:82:y:2022:i:c:p:241-260
    DOI: 10.1016/j.iref.2022.05.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056022001538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2022.05.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James W. Taylor, 2008. "Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 382-406, Summer.
    2. Martins-Filho Carlos & Yao Feng, 2006. "Estimation of Value-at-Risk and Expected Shortfall based on Nonlinear Models of Return Dynamics and Extreme Value Theory," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(2), pages 1-43, May.
    3. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    4. Chen, Ying & Härdle, Wolfgang & Jeong, Seok-Oh, 2008. "Nonparametric Risk Management With Generalized Hyperbolic Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 910-923.
    5. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    6. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, January.
    7. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    8. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    9. Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2016. "Model risk of risk models," Journal of Financial Stability, Elsevier, vol. 23(C), pages 79-91.
    10. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    11. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    12. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    13. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
    14. John Geweke & Gianni Amisano, 2011. "Hierarchical Markov normal mixture models with applications to financial asset returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 1-29, January/F.
    15. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 84-108.
    16. Song Xi Chen, 2005. "Nonparametric Inference of Value-at-Risk for Dependent Financial Returns," Journal of Financial Econometrics, Oxford University Press, vol. 3(2), pages 227-255.
    17. Sajjad Rasoul & Coakley Jerry & Nankervis John C, 2008. "Markov-Switching GARCH Modelling of Value-at-Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-31, September.
    18. Taylor, James W., 2020. "Forecast combinations for value at risk and expected shortfall," International Journal of Forecasting, Elsevier, vol. 36(2), pages 428-441.
    19. Alexander, Carol & Sheedy, Elizabeth, 2008. "Developing a stress testing framework based on market risk models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2220-2236, October.
    20. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    21. Ziegelmann, Flavio A., 2002. "Nonparametric Estimation Of Volatility Functions: The Local Exponential Estimator," Econometric Theory, Cambridge University Press, vol. 18(4), pages 985-991, August.
    22. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    23. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    24. Frédéric Ferraty & Alejandro Quintela-Del-Río, 2016. "Conditional VAR and Expected Shortfall: A New Functional Approach," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 263-292, February.
    25. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    26. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    27. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
    28. Jianqing Fan & Juan Gu, 2003. "Semiparametric estimation of Value at Risk," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 261-290, December.
    29. O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129, January.
    30. Song Xi Chen, 2008. "Nonparametric Estimation of Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 6(1), pages 87-107, Winter.
    31. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    32. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    33. Cai, Zongwu, 2002. "Regression Quantiles For Time Series," Econometric Theory, Cambridge University Press, vol. 18(1), pages 169-192, February.
    34. Mishra, Santosh & Su, Liangjun & Ullah, Aman, 2010. "Semiparametric Estimator of Time Series Conditional Variance," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 256-274.
    35. Tobias Fissler & Johanna F. Ziegel & Tilmann Gneiting, 2015. "Expected Shortfall is jointly elicitable with Value at Risk - Implications for backtesting," Papers 1507.00244, arXiv.org, revised Jul 2015.
    36. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    37. Filippo Curti & Ibrahim Ergen & Minh Le & Marco Migueis & Rob T. Stewart, 2016. "Benchmarking Operational Risk Models," Finance and Economics Discussion Series 2016-070, Board of Governors of the Federal Reserve System (U.S.).
    38. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yousaf, Imran & Pham, Linh & Goodell, John W., 2023. "The connectedness between meme tokens, meme stocks, and other asset classes: Evidence from a quantile connectedness approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    2. Aloosh, Arash & Choi, Hyung-Eun & Ouzan, Samuel, 2023. "The tail wagging the dog: How do meme stocks affect market efficiency?," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 68-78.
    3. Nobanee, Haitham & Ellili, Nejla Ould Daoud, 2023. "What do we know about meme stocks? A bibliometric and systematic review, current streams, developments, and directions for future research," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 589-602.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    2. Gery Geenens & Richard Dunn, 2017. "A nonparametric copula approach to conditional Value-at-Risk," Papers 1712.05527, arXiv.org, revised Oct 2019.
    3. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Geenens, Gery & Dunn, Richard, 2022. "A nonparametric copula approach to conditional Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 21(C), pages 19-37.
    5. Ning Zhang & Yujing Gong & Xiaohan Xue, 2023. "Less disagreement, better forecasts: Adjusted risk measures in the energy futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1332-1372, October.
    6. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    7. Mehmet Sahiner & David G. McMillan & Dimos Kambouroudis, 2023. "Do artificial neural networks provide improved volatility forecasts: Evidence from Asian markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(3), pages 723-762, September.
    8. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    9. Giuseppe Storti & Chao Wang, 2021. "Modelling uncertainty in financial tail risk: a forecast combination and weighted quantile approach," Papers 2104.04918, arXiv.org, revised Jul 2021.
    10. Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
    11. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    12. Giuseppe Storti & Chao Wang, 2023. "Modeling uncertainty in financial tail risk: A forecast combination and weighted quantile approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1648-1663, November.
    13. Li, Dan & Clements, Adam & Drovandi, Christopher, 2023. "A Bayesian approach for more reliable tail risk forecasts," Journal of Financial Stability, Elsevier, vol. 64(C).
    14. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    15. Storti, Giuseppe & Wang, Chao, 2022. "Nonparametric expected shortfall forecasting incorporating weighted quantiles," International Journal of Forecasting, Elsevier, vol. 38(1), pages 224-239.
    16. Yuzhi Cai, 2021. "Estimating expected shortfall using a quantile function model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4332-4360, July.
    17. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    18. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    19. Wang, Chuan-Sheng & Zhao, Zhibiao, 2016. "Conditional Value-at-Risk: Semiparametric estimation and inference," Journal of Econometrics, Elsevier, vol. 195(1), pages 86-103.
    20. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).

    More about this item

    Keywords

    Value at risk; Expected shortfall; Risk modeling; Nonparametric; Semiparametric; Meme stocks;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:82:y:2022:i:c:p:241-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.