IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v147y2008i1p120-130.html
   My bibliography  Save this article

Nonparametric estimation of conditional VaR and expected shortfall

Author

Listed:
  • Cai, Zongwu
  • Wang, Xian

Abstract

This paper considers a new nonparametric estimation of conditional value-at-risk and expected shortfall functions. Conditional value-at-risk is estimated by inverting the weighted double kernel local linear estimate of the conditional distribution function. The nonparametric estimator of conditional expected shortfall is constructed by a plugging-in method. Both the asymptotic normality and consistency of the proposed nonparametric estimators are established at both boundary and interior points for time series data. We show that the weighted double kernel local linear conditional distribution estimator has the advantages of always being a distribution, continuous, and differentiable, besides the good properties from both the double kernel local linear and weighted Nadaraya-Watson estimators. Moreover, an ad hoc data-driven fashion bandwidth selection method is proposed, based on the nonparametric version of the Akaike information criterion. Finally, an empirical study is carried out to illustrate the finite sample performance of the proposed estimators.

Suggested Citation

  • Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
  • Handle: RePEc:eee:econom:v:147:y:2008:i:1:p:120-130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(08)00129-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1291-1320, October.
    2. Zongwu Cai & George G. Roussas, 1998. "Efficient Estimation of a Distribution Function under Quadrant Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 211-224, March.
    3. Cai, Zongwu, 2001. "Weighted Nadaraya-Watson regression estimation," Statistics & Probability Letters, Elsevier, vol. 51(3), pages 307-318, February.
    4. Len Umantsev & Victor Chernozhukov, 2001. "Conditional value-at-risk: Aspects of modeling and estimation," Empirical Economics, Springer, vol. 26(1), pages 271-292.
    5. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    6. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    7. Song Xi Chen, 2005. "Nonparametric Inference of Value-at-Risk for Dependent Financial Returns," Journal of Financial Econometrics, Oxford University Press, vol. 3(2), pages 227-255.
    8. Jianqing Fan & Juan Gu, 2003. "Semiparametric estimation of Value at Risk," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 261-290, December.
    9. Olivier SCAILLET, 2004. "Nonparametric Estimation of Conditional Expected Shortfall," FAME Research Paper Series rp112, International Center for Financial Asset Management and Engineering.
    10. O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129, January.
    11. Hall, Peter & Wolff, Rodney C. L. & Yao, Qiwei, 1999. "Methods for estimating a conditional distribution function," LSE Research Online Documents on Economics 6631, London School of Economics and Political Science, LSE Library.
    12. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    13. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    14. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    15. Fan, Jianqing & Yao, Qiwei & Tong, Howell, 1996. "Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems," LSE Research Online Documents on Economics 6704, London School of Economics and Political Science, LSE Library.
    16. Antonio Cosma & Olivier Scaillet & Rainer von Sachs, 2005. "Multiariate Wavelet-based sahpe preserving estimation for dependant observation," FAME Research Paper Series rp144, International Center for Financial Asset Management and Engineering.
    17. Frey, Rudiger & McNeil, Alexander J., 2002. "VaR and expected shortfall in portfolios of dependent credit risks: Conceptual and practical insights," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1317-1334, July.
    18. Song Xi Chen, 2008. "Nonparametric Estimation of Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 6(1), pages 87-107, Winter.
    19. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    20. Cai, Zongwu, 2002. "Regression Quantiles For Time Series," Econometric Theory, Cambridge University Press, vol. 18(1), pages 169-192, February.
    21. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    22. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:wyi:journl:002095 is not listed on IDEAS
    2. Zongwu Cai & Xian Wang, 2013. "Nonparametric Methods for Estimating Conditional VaR and Expected Shortfall," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    3. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    4. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    5. d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
    6. Wang, Chuan-Sheng & Zhao, Zhibiao, 2016. "Conditional Value-at-Risk: Semiparametric estimation and inference," Journal of Econometrics, Elsevier, vol. 195(1), pages 86-103.
    7. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Schaumburg, Julia, 2010. "Predicting extreme VaR: Nonparametric quantile regression with refinements from extreme value theory," SFB 649 Discussion Papers 2010-009, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Gery Geenens & Richard Dunn, 2017. "A nonparametric copula approach to conditional Value-at-Risk," Papers 1712.05527, arXiv.org, revised Oct 2019.
    10. Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).
    11. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    12. Schaumburg, Julia, 2012. "Predicting extreme value at risk: Nonparametric quantile regression with refinements from extreme value theory," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4081-4096.
    13. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
    14. Hubner, Stefan, 2016. "Topics in nonparametric identification and estimation," Other publications TiSEM 08fce56b-3193-46e0-871b-0, Tilburg University, School of Economics and Management.
    15. Geenens, Gery & Dunn, Richard, 2022. "A nonparametric copula approach to conditional Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 21(C), pages 19-37.
    16. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    17. Huang, Jinbo & Ding, Ashley & Li, Yong & Lu, Dong, 2020. "Increasing the risk management effectiveness from higher accuracy: A novel non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    18. Leorato, Samantha & Peracchi, Franco & Tanase, Andrei V., 2012. "Asymptotically efficient estimation of the conditional expected shortfall," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 768-784.
    19. Zhongde Luo, 2020. "Nonparametric kernel estimation of CVaR under $$\alpha $$α-mixing sequences," Statistical Papers, Springer, vol. 61(2), pages 615-643, April.
    20. Oliver Linton & Dajing Shang & Yang Yan, 2012. "Efficient estimation of conditional risk measures in a semiparametric GARCH model," CeMMAP working papers 25/12, Institute for Fiscal Studies.
    21. Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:147:y:2008:i:1:p:120-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.