IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i5p758-d97722.html
   My bibliography  Save this article

An Optimal Dispatch Model of Wind-Integrated Power System Considering Demand Response and Reliability

Author

Listed:
  • Qingshan Xu

    (School of Electrical Engineering, Southeast University, Sipailou 2#, Nanjing 210096, China)

  • Yifan Ding

    (School of Electrical Engineering, Southeast University, Sipailou 2#, Nanjing 210096, China)

  • Aixia Zheng

    (State Grid Jiangsu Electric Power Company, Shangai Road 215#, Nanjing 210024, China)

Abstract

Demand response (DR) has become an impressive option in the deregulated power system due to its features of availability, quickness and applicability. In this paper, a novel economic dispatch model integrated with wind power is proposed, where incentive-based DR and reliability measures are taken into account. Compared with the conventional models, the proposed model considers customers’ power consumption response to the incentive price. The load profile is optimized with DR to depress the influence on the dispatch caused by the anti-peak-shaving and intermittence of wind generation. Furthermore, a probabilistic formulation is established to calculate the expected energy not supplied (EENS). This approach combines the probability distribution of the forecast errors of load and wind power, as well as the outage replacement rates of units into consideration. The cost of EENS is added into the objective to achieve an optimal equilibrium point between economy and reliability of power system operation. The proposed model is solved by mixed integer linear programming (MILP). The applicability and effectiveness of this model is illustrated by numerical simulations tested on the IEEE 24-bus Reliability Test System.

Suggested Citation

  • Qingshan Xu & Yifan Ding & Aixia Zheng, 2017. "An Optimal Dispatch Model of Wind-Integrated Power System Considering Demand Response and Reliability," Sustainability, MDPI, vol. 9(5), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:758-:d:97722
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/5/758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/5/758/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koeppel, Gaudenz & Andersson, Göran, 2009. "Reliability modeling of multi-carrier energy systems," Energy, Elsevier, vol. 34(3), pages 235-244.
    2. Osório, G.J. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources," Energy, Elsevier, vol. 82(C), pages 949-959.
    3. Dupont, B. & De Jonghe, C. & Olmos, L. & Belmans, R., 2014. "Demand response with locational dynamic pricing to support the integration of renewables," Energy Policy, Elsevier, vol. 67(C), pages 344-354.
    4. Qingwu Gong & Jiazhi Lei & Hui Qiao & Jingjing Qiu, 2017. "Risk Assessment for Distribution Systems Using an Improved PEM-Based Method Considering Wind and Photovoltaic Power Distribution," Sustainability, MDPI, vol. 9(4), pages 1-15, March.
    5. Nian Shi & Yi Luo, 2017. "Energy Storage System Sizing Based on a Reliability Assessment of Power Systems Integrated with Wind Power," Sustainability, MDPI, vol. 9(3), pages 1-20, March.
    6. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    7. Yu-Qing Bao & Yang Li & Beibei Wang & Minqiang Hu & Yanmin Zhou, 2017. "Day-Ahead Scheduling Considering Demand Response as a Frequency Control Resource," Energies, MDPI, vol. 10(1), pages 1-16, January.
    8. Chi-Chun Lo & Shang-Ho Tsai & Bor-Shyh Lin, 2016. "Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study," Energies, MDPI, vol. 9(2), pages 1-16, February.
    9. Wei, Wei & Liu, Feng & Wang, Jianhui & Chen, Laijun & Mei, Shengwei & Yuan, Tiejiang, 2016. "Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants," Applied Energy, Elsevier, vol. 183(C), pages 674-684.
    10. Tuohy, A. & O'Malley, M., 2011. "Pumped storage in systems with very high wind penetration," Energy Policy, Elsevier, vol. 39(4), pages 1965-1974, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghasemi-Marzbali, Ali & Shafiei, Mohammad & Ahmadiahangar, Roya, 2023. "Day-ahead economical planning of multi-vector energy district considering demand response program," Applied Energy, Elsevier, vol. 332(C).
    2. Liu, Shuo & Yang, Zhifang & Xia, Qing & Lin, Wei & Shi, Lianjun & Zeng, Dan, 2020. "Power trading region considering long-term contract for interconnected power networks," Applied Energy, Elsevier, vol. 261(C).
    3. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    4. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    5. Shi, Jiantao & Guo, Ye & Shen, Xinwei & Wu, Wenchuan & Sun, Hongbin, 2024. "Multi-interval rolling-window joint dispatch and pricing of energy and reserve under uncertainty," Applied Energy, Elsevier, vol. 356(C).
    6. Huang, Kangdi & Liu, Pan & Kim, Jong-Suk & Xu, Weifeng & Gong, Yu & Cheng, Qian & Zhou, Yong, 2023. "A model coupling current non-adjustable, coming adjustable and remaining stages for daily generation scheduling of a wind-solar-hydro complementary system," Energy, Elsevier, vol. 263(PB).
    7. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
    8. Li, M.S. & Lin, Z.J. & Ji, T.Y. & Wu, Q.H., 2018. "Risk constrained stochastic economic dispatch considering dependence of multiple wind farms using pair-copula," Applied Energy, Elsevier, vol. 226(C), pages 967-978.
    9. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    10. Danyang Guo & Jilai Yu & Mingfei Ban, 2018. "Security-Constrained Unit Commitment Considering Differentiated Regional Air Pollutant Intensity," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    11. Wang, Han & Han, Shuang & Liu, Yongqian & Yan, Jie & Li, Li, 2019. "Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system," Applied Energy, Elsevier, vol. 237(C), pages 1-10.
    12. Jordehi, A. Rezaee, 2018. "How to deal with uncertainties in electric power systems? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 145-155.
    13. Xiuyun Wang & Shaoxin Chen & Yibing Zhou & Jian Wang & Yang Cui, 2018. "Optimal Dispatch of Microgrid with Combined Heat and Power System Considering Environmental Cost," Energies, MDPI, vol. 11(10), pages 1-23, September.
    14. Hussein Jumma Jabir & Jiashen Teh & Dahaman Ishak & Hamza Abunima, 2018. "Impacts of Demand-Side Management on Electrical Power Systems: A Review," Energies, MDPI, vol. 11(5), pages 1-19, April.
    15. Fu, Yiwei & Lu, Zongxiang & Hu, Wei & Wu, Shuang & Wang, Yiting & Dong, Ling & Zhang, Jietan, 2019. "Research on joint optimal dispatching method for hybrid power system considering system security," Applied Energy, Elsevier, vol. 238(C), pages 147-163.
    16. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danyang Guo & Jilai Yu & Mingfei Ban, 2018. "Security-Constrained Unit Commitment Considering Differentiated Regional Air Pollutant Intensity," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    2. Zhang, Menglin & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2018. "A systematic approach for the joint dispatch of energy and reserve incorporating demand response," Applied Energy, Elsevier, vol. 230(C), pages 1279-1291.
    3. Motta, Vinicius N. & Anjos, Miguel F. & Gendreau, Michel, 2024. "Survey of optimization models for power system operation and expansion planning with demand response," European Journal of Operational Research, Elsevier, vol. 312(2), pages 401-412.
    4. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    5. Durmaz, Tunç, 2016. "Precautionary Storage in Electricity Markets," Discussion Papers 2016/5, Norwegian School of Economics, Department of Business and Management Science.
    6. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    7. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    8. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Stefanakis, Ioannis & Spanos, Petros & Stefanakis, Nikos, 2013. "Technical details regarding the design, the construction and the operation of seawater pumped storage systems," Energy, Elsevier, vol. 55(C), pages 619-630.
    9. Zhang, Gaohang & Li, Fengting & Wang, Sen & Yin, Chunya, 2023. "Robust low-carbon energy and reserve scheduling considering operational risk and flexibility improvement," Energy, Elsevier, vol. 284(C).
    10. Hanak, Dawid P. & Powell, Dante & Manovic, Vasilije, 2017. "Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage," Applied Energy, Elsevier, vol. 191(C), pages 193-203.
    11. Nyamdash, Batsaikhan & Denny, Eleanor, 2013. "The impact of electricity storage on wholesale electricity prices," Energy Policy, Elsevier, vol. 58(C), pages 6-16.
    12. Maroufmashat, Azadeh & Elkamel, Ali & Fowler, Michael & Sattari, Sourena & Roshandel, Ramin & Hajimiragha, Amir & Walker, Sean & Entchev, Evgueniy, 2015. "Modeling and optimization of a network of energy hubs to improve economic and emission considerations," Energy, Elsevier, vol. 93(P2), pages 2546-2558.
    13. Rahmani, Shima & Amjady, Nima, 2017. "A new optimal power flow approach for wind energy integrated power systems," Energy, Elsevier, vol. 134(C), pages 349-359.
    14. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    15. Jin, Jingliang & Wen, Qinglan & Cheng, Siqi & Qiu, Yaru & Zhang, Xianyue & Guo, Xiaojun, 2022. "Optimization of carbon emission reduction paths in the low-carbon power dispatching process," Renewable Energy, Elsevier, vol. 188(C), pages 425-436.
    16. Barbaros, Efe & Aydin, Ismail & Celebioglu, Kutay, 2021. "Feasibility of pumped storage hydropower with existing pricing policy in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    17. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    18. Guangyi Wu & Xiangxin Shao & Hong Jiang & Shaoxin Chen & Yibing Zhou & Hongyang Xu, 2020. "Control Strategy of the Pumped Storage Unit to Deal with the Fluctuation of Wind and Photovoltaic Power in Microgrid," Energies, MDPI, vol. 13(2), pages 1-23, January.
    19. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    20. Jan Abrell & Hannes Weigt, 2016. "Investments in a Combined Energy Network Model: Substitution between Natural Gas and Electricity?," The Energy Journal, , vol. 37(4), pages 63-86, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:758-:d:97722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.