IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip2p2714-2730.html
   My bibliography  Save this article

A review of solar chimney integrated systems for space heating and cooling application

Author

Listed:
  • Monghasemi, Nima
  • Vadiee, Amir

Abstract

The conventional indoor climate comfort systems have a major share of energy consumption in residential sectors. Passive design is an approach that can reduce building energy demand by minimizing mechanical systems power consumption. Solar chimneys as natural draught components that utilize solar energy to build up stack pressure are an innovative passive design. Solar chimney contributes to an increase in efficiency for residential space heating and cooling in addition to a considerable reduction of greenhouse gas emissions. This article presents an overview of recent progresses in solar chimney research. The construction industry has a tendency in utilization of integrated solar chimney configurations to improve the level of thermal comfort. In this paper, common integrated configurations based on solar chimneys were summarized. Besides, the challenging aspects and recommendations of each system were mentioned. Combined energy systems based on solar chimney have been regarded as efficient strategies toward green building architecture. Each system has its own pros and cons and there is not a general guideline that can arrange these systems in descending order according to their performance. It is necessary to carry out more experiments to solve forthcoming problems in their commercial applications. Further studies are suggested in developing optimization strategies and control systems. A desirable control system responds to inhabitants needs unobtrusively and allows them to change a condition if it is perceived thermally uncomfortable, with prompt feedback.

Suggested Citation

  • Monghasemi, Nima & Vadiee, Amir, 2018. "A review of solar chimney integrated systems for space heating and cooling application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2714-2730.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:2714-2730
    DOI: 10.1016/j.rser.2017.06.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117310225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.06.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Yuebin & Li, Haorong & Niu, Fuxin & Yu, Daihong, 2014. "Investigation of a coupled geothermal cooling system with earth tube and solar chimney," Applied Energy, Elsevier, vol. 114(C), pages 209-217.
    2. Punyasompun, Sompop & Hirunlabh, Jongjit & Khedari, Joseph & Zeghmati, Belkacem, 2009. "Investigation on the application of solar chimney for multi-storey buildings," Renewable Energy, Elsevier, vol. 34(12), pages 2545-2561.
    3. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1342-1351.
    4. AboulNaga, M.M & Abdrabboh, S.N, 2000. "Improving night ventilation into low-rise buildings in hot-arid climates exploring a combined wall–roof solar chimney," Renewable Energy, Elsevier, vol. 19(1), pages 47-54.
    5. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    6. Chungloo, Sudaporn & Limmeechokchai, Bundit, 2009. "Utilization of cool ceiling with roof solar chimney in Thailand: The experimental and numerical analysis," Renewable Energy, Elsevier, vol. 34(3), pages 623-633.
    7. Ong, K.S., 2003. "A mathematical model of a solar chimney," Renewable Energy, Elsevier, vol. 28(7), pages 1047-1060.
    8. Khedari, Joseph & Rachapradit, Ninnart & Hirunlabh, Jongjit, 2003. "Field study of performance of solar chimney with air-conditioned building," Energy, Elsevier, vol. 28(11), pages 1099-1114.
    9. Liu, Shuli & Li, Yongcai, 2015. "An experimental study on the thermal performance of a solar chimney without and with PCM," Renewable Energy, Elsevier, vol. 81(C), pages 338-346.
    10. Garcia-Hansen, V & Esteves, A & Pattini, A, 2002. "Passive solar systems for heating, daylighting and ventilation for rooms without an equator-facing facade," Renewable Energy, Elsevier, vol. 26(1), pages 91-111.
    11. Alex Yong Kwang Tan & Nyuk Hien Wong, 2013. "Parameterization Studies of Solar Chimneys in the Tropics," Energies, MDPI, vol. 6(1), pages 1-19, January.
    12. Li, Yongcai & Liu, Shuli, 2014. "Experimental study on thermal performance of a solar chimney combined with PCM," Applied Energy, Elsevier, vol. 114(C), pages 172-178.
    13. Bahadori, Mehdi N., 1994. "Viability of wind towers in achieving summer comfort in the hot arid regions of the middle east," Renewable Energy, Elsevier, vol. 5(5), pages 879-892.
    14. Mathur, Anuj & Surana, Ankit Kumar & Mathur, Sanjay, 2016. "Numerical investigation of the performance and soil temperature recovery of an EATHE system under intermittent operations," Renewable Energy, Elsevier, vol. 95(C), pages 510-521.
    15. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    16. Tittelein, Pierre & Achard, Gilbert & Wurtz, Etienne, 2009. "Modelling earth-to-air heat exchanger behaviour with the convolutive response factors method," Applied Energy, Elsevier, vol. 86(9), pages 1683-1691, September.
    17. Hamdy, I.F. & Fikry, M.A., 1998. "Passive solar ventilation," Renewable Energy, Elsevier, vol. 14(1), pages 381-386.
    18. A. P. Haghighi & M. Maerefat, 2015. "Design guideline for application of earth-to-air heat exchanger coupled with solar chimney as a natural heating system," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 10(3), pages 294-304.
    19. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 581-596.
    20. DeBlois, Justin & Bilec, Melissa & Schaefer, Laura, 2013. "Simulating home cooling load reductions for a novel opaque roof solar chimney configuration," Applied Energy, Elsevier, vol. 112(C), pages 142-151.
    21. Li, Haorong & Yu, Yuebin & Niu, Fuxin & Shafik, Michel & Chen, Bing, 2014. "Performance of a coupled cooling system with earth-to-air heat exchanger and solar chimney," Renewable Energy, Elsevier, vol. 62(C), pages 468-477.
    22. Maerefat, M. & Haghighi, A.P., 2010. "Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney," Renewable Energy, Elsevier, vol. 35(10), pages 2316-2324.
    23. Zhai, X.Q. & Song, Z.P. & Wang, R.Z., 2011. "A review for the applications of solar chimneys in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3757-3767.
    24. Harris, D.J. & Helwig, N., 2007. "Solar chimney and building ventilation," Applied Energy, Elsevier, vol. 84(2), pages 135-146, February.
    25. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    26. DeBlois, Justin C. & Bilec, Melissa M. & Schaefer, Laura A., 2013. "Design and zonal building energy modeling of a roof integrated solar chimney," Renewable Energy, Elsevier, vol. 52(C), pages 241-250.
    27. Maerefat, M. & Haghighi, A.P., 2010. "Natural cooling of stand-alone houses using solar chimney and evaporative cooling cavity," Renewable Energy, Elsevier, vol. 35(9), pages 2040-2052.
    28. Imran, Ahmed Abdulnabi & Jalil, Jalal M. & Ahmed, Sabah T., 2015. "Induced flow for ventilation and cooling by a solar chimney," Renewable Energy, Elsevier, vol. 78(C), pages 236-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Youbo & Wang, Bing & Luo, Chengjia & Shi, Long & Lu, Ning & Dong, Bingyan & Zhong, Hua, 2024. "Theoretical models for predicting ventilation performance of vertical solar chimneys in tunnels," Renewable Energy, Elsevier, vol. 232(C).
    2. Tao, Yao & Fang, Xiang & Chew, Michael Yit Lin & Zhang, Lihai & Tu, Jiyuan & Shi, Long, 2021. "Predicting airflow in naturally ventilated double-skin facades: theoretical analysis and modelling," Renewable Energy, Elsevier, vol. 179(C), pages 1940-1954.
    3. de Araujo Passos, Luigi Antonio & Ceha, Thomas Joseph & Baldi, Simone & De Schutter, Bart, 2023. "Model predictive control of a thermal chimney and dynamic solar shades for an all-glass facades building," Energy, Elsevier, vol. 264(C).
    4. Wang, Ye & Chen, Xueqin & Qi, Xiaobing & Zhou, Jie, 2024. "Numerical study on the effect of optimizing the Trombe wall structure with built-in fins on improving building energy efficiency in severe cold region," Renewable Energy, Elsevier, vol. 222(C).
    5. Tao, Yao & Zhang, Haihua & Zhang, Lili & Zhang, Guomin & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double-skin façade in buildings," Renewable Energy, Elsevier, vol. 167(C), pages 184-198.
    6. Ceylin Şirin & Azim Doğuş Tuncer & Ataollah Khanlari, 2023. "Improving the Performance of Unglazed Solar Air Heating Walls Using Mesh Packing and Nano-Enhanced Absorber Coating: An Energy–Exergy and Enviro-Economic Assessment," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    7. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Cristiana Brasil Maia & Janaína de Oliveira Castro Silva, 2022. "CFD Analysis of a Small-Scale Solar Chimney Exposed to Ambient Crosswind," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    9. Simon Li, 2023. "Review of Engineering Controls for Indoor Air Quality: A Systems Design Perspective," Sustainability, MDPI, vol. 15(19), pages 1-46, September.
    10. Huang, Sheng & Li, Wuyan & Lu, Jun & Li, Yongcai & Wang, Zhihao & Zhu, Shaohui, 2024. "Experimental study on thermal performances of a solar chimney with and without PCM under different system inclination angles," Energy, Elsevier, vol. 290(C).
    11. Zhang, Haihua & Tao, Yao & Zhang, Guomin & Li, Jie & Setunge, Sujeeva & Shi, Long, 2022. "Impacts of storey number of buildings on solar chimney performance: A theoretical and numerical approach," Energy, Elsevier, vol. 261(PA).
    12. Elghamry, Rania & Hassan, Hamdy, 2020. "Impact a combination of geothermal and solar energy systems on building ventilation, heating and output power: Experimental study," Renewable Energy, Elsevier, vol. 152(C), pages 1403-1413.
    13. Wu, Shuang-Ying & Xu, Li & Xiao, Lan, 2020. "Air purification and thermal performance of photocatalytic-Trombe wall based on multiple physical fields coupling," Renewable Energy, Elsevier, vol. 148(C), pages 338-348.
    14. Tao, Yao & Huang, Hua & Fang, Xiang & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Solar radiation on naturally ventilated double skin facade in real climates: The impact of solar incidence angle," Renewable Energy, Elsevier, vol. 232(C).
    15. Long, Tianhe & Zhao, Ningjing & Li, Wuyan & Wei, Shen & Li, Yongcai & Lu, Jun & Huang, Sheng & Qiao, Zhenyong, 2022. "Natural ventilation performance of solar chimney with and without earth-air heat exchanger during transition seasons," Energy, Elsevier, vol. 250(C).
    16. Gong, Jun & Chew, Lup Wai & Lee, Poh Seng, 2024. "Theoretical model for high-rise solar chimneys and optimum shape for uniform flowrate distribution," Energy, Elsevier, vol. 298(C).
    17. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    3. Ahmad Taghdisi & Yousof Ghanbari & Mohammad Eskandari, 2020. "Energy-Conservation Considerations Through a Novel Integration of Sunspace and Solar Chimney in The Terraced Rural Dwellings," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 1-13.
    4. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    5. Zhai, X.Q. & Song, Z.P. & Wang, R.Z., 2011. "A review for the applications of solar chimneys in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3757-3767.
    6. Huang, Sheng & Li, Wuyan & Lu, Jun & Li, Yongcai & Wang, Zhihao & Zhu, Shaohui, 2024. "Experimental study on thermal performances of a solar chimney with and without PCM under different system inclination angles," Energy, Elsevier, vol. 290(C).
    7. Li, Yongcai & Long, Tianhe & Bai, Xi & Wang, Linfeng & Li, Wuyan & Liu, Shuli & Lu, Jun & Cheng, Yong & Ye, Kai & Huang, Sheng, 2021. "An experimental investigation on the passive ventilation and cooling performance of an integrated solar chimney and earth–air heat exchanger," Renewable Energy, Elsevier, vol. 175(C), pages 486-500.
    8. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    9. Xamán, J. & Vargas-López, R. & Gijón-Rivera, M. & Zavala-Guillén, I. & Jiménez, M.J. & Arce, J., 2019. "Transient thermal analysis of a solar chimney for buildings with three different types of absorbing materials: Copper plate/PCM/concrete wall," Renewable Energy, Elsevier, vol. 136(C), pages 139-158.
    10. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Quesada, Guillermo & Rousse, Daniel & Dutil, Yvan & Badache, Messaoud & Hallé, Stéphane, 2012. "A comprehensive review of solar facades. Opaque solar facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2820-2832.
    12. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    13. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    14. Long, Tianhe & Zhao, Ningjing & Li, Wuyan & Wei, Shen & Li, Yongcai & Lu, Jun & Huang, Sheng & Qiao, Zhenyong, 2022. "Natural ventilation performance of solar chimney with and without earth-air heat exchanger during transition seasons," Energy, Elsevier, vol. 250(C).
    15. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    16. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    17. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.
    18. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    19. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    20. Faraj, Khaireldin & Khaled, Mahmoud & Faraj, Jalal & Hachem, Farouk & Castelain, Cathy, 2020. "Phase change material thermal energy storage systems for cooling applications in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:2714-2730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.