IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i6-7p1246-1261.html
   My bibliography  Save this article

Advanced control systems engineering for energy and comfort management in a building environment--A review

Author

Listed:
  • Dounis, A.I.
  • Caraiscos, C.

Abstract

Given restrictions that comfort conditions in the interior of a building are satisfied, it becomes obvious that the problem of energy conservation is a multidimensional one. Scientists from a variety of fields have been working on this problem for a few decades now; however, essentially it remains an open issue. In the beginning of this article, we define the whole problem in which the topics are: energy, comfort and control. Next, we briefly present the conventional control systems in buildings and their advantages and disadvantage. We will also see how the development of intelligent control systems has improved the efficiency of control systems for the management of indoor environment including user preferences. This paper presents a survey exploring state of the art control systems in buildings. Attention will be focused on the design of agent-based intelligent control systems in building environments. In particular, this paper presents a multi-agent control system (MACS). This advanced control system is simulated using TRNSYS/MATLAB. The simulation results show that the MACS successfully manage the user's preferences for thermal and illuminance comfort, indoor air quality and energy conservation.

Suggested Citation

  • Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:6-7:p:1246-1261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(08)00145-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dounis, A. I. & Bruant, M. & Guarracino, G. & Michel, P. & Santamouris, M., 1996. "Indoor air-quality control by a fuzzy-reasoning machine in naturally ventilated buildings," Applied Energy, Elsevier, vol. 54(1), pages 11-28, May.
    2. Dounis, A. I. & Manolakis, D. E., 2001. "Design of a fuzzy system for living space thermal-comfort regulation," Applied Energy, Elsevier, vol. 69(2), pages 119-144, June.
    3. Mathews, E. H. & Arndt, D. C. & Piani, C. B. & van Heerden, E., 2000. "Developing cost efficient control strategies to ensure optimal energy use and sufficient indoor comfort," Applied Energy, Elsevier, vol. 66(2), pages 135-159, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    2. Whiffen, T.R. & Naylor, S. & Hill, J. & Smith, L. & Callan, P.A. & Gillott, M. & Wood, C.J. & Riffat, S.B., 2016. "A concept review of power line communication in building energy management systems for the small to medium sized non-domestic built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 618-633.
    3. Esmail Mahmoudi Saber & Issa Chaer & Aaron Gillich & Bukola Grace Ekpeti, 2021. "Review of Intelligent Control Systems for Natural Ventilation as Passive Cooling Strategy for UK Buildings and Similar Climatic Conditions," Energies, MDPI, vol. 14(15), pages 1-16, July.
    4. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    5. Wang, Zhu & Wang, Lingfeng & Dounis, Anastasios I. & Yang, Rui, 2012. "Multi-agent control system with information fusion based comfort model for smart buildings," Applied Energy, Elsevier, vol. 99(C), pages 247-254.
    6. Ghadi, Yazeed Yasin & Rasul, M.G. & Khan, M.M.K., 2016. "Design and development of advanced fuzzy logic controllers in smart buildings for institutional buildings in subtropical Queensland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 738-744.
    7. Shahnawaz Ahmed, S. & Shah Majid, Md. & Novia, Hendri & Abd Rahman, Hasimah, 2007. "Fuzzy logic based energy saving technique for a central air conditioning system," Energy, Elsevier, vol. 32(7), pages 1222-1234.
    8. Baldi, Simone & Korkas, Christos D. & Lv, Maolong & Kosmatopoulos, Elias B., 2018. "Automating occupant-building interaction via smart zoning of thermostatic loads: A switched self-tuning approach," Applied Energy, Elsevier, vol. 231(C), pages 1246-1258.
    9. Mossolly, M. & Ghali, K. & Ghaddar, N., 2009. "Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm," Energy, Elsevier, vol. 34(1), pages 58-66.
    10. Behl, Madhur & Smarra, Francesco & Mangharam, Rahul, 2016. "DR-Advisor: A data-driven demand response recommender system," Applied Energy, Elsevier, vol. 170(C), pages 30-46.
    11. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2017. "User satisfaction-induced demand side load management in residential buildings with user budget constraint," Applied Energy, Elsevier, vol. 187(C), pages 352-366.
    12. Kusiak, Andrew & Tang, Fan & Xu, Guanglin, 2011. "Multi-objective optimization of HVAC system with an evolutionary computation algorithm," Energy, Elsevier, vol. 36(5), pages 2440-2449.
    13. Moudgil, Vipul & Hewage, Kasun & Hussain, Syed Asad & Sadiq, Rehan, 2023. "Integration of IoT in building energy infrastructure: A critical review on challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    14. Anatolijs Borodinecs & Arturs Palcikovskis & Vladislavs Jacnevs, 2022. "Indoor Air CO 2 Sensors and Possible Uncertainties of Measurements: A Review and an Example of Practical Measurements," Energies, MDPI, vol. 15(19), pages 1-15, September.
    15. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2017. "Analysis of energy and control efficiencies of fuzzy logic and artificial neural network technologies in the heating energy supply system responding to the changes of user demands," Applied Energy, Elsevier, vol. 190(C), pages 222-231.
    16. Ghahramani, Ali & Castro, Guillermo & Karvigh, Simin Ahmadi & Becerik-Gerber, Burcin, 2018. "Towards unsupervised learning of thermal comfort using infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 41-49.
    17. Baldi, Simone & Zhang, Fan & Le Quang, Thuan & Endel, Petr & Holub, Ondrej, 2019. "Passive versus active learning in operation and adaptive maintenance of Heating, Ventilation, and Air Conditioning," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Ifrah Tahir & Ali Nasir & Abdullah Algethami, 2022. "Optimal Control Policy for Energy Management of a Commercial Bank," Energies, MDPI, vol. 15(6), pages 1-19, March.
    19. Baldi, Simone & Michailidis, Iakovos & Ravanis, Christos & Kosmatopoulos, Elias B., 2015. "Model-based and model-free “plug-and-play” building energy efficient control," Applied Energy, Elsevier, vol. 154(C), pages 829-841.
    20. Baldi, Simone & Yuan, Shuai & Endel, Petr & Holub, Ondrej, 2016. "Dual estimation: Constructing building energy models from data sampled at low rate," Applied Energy, Elsevier, vol. 169(C), pages 81-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:6-7:p:1246-1261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.