IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v61y2016icp70-85.html
   My bibliography  Save this article

Energy efficiency and thermal comfort in historic buildings: A review

Author

Listed:
  • Martínez-Molina, Antonio
  • Tort-Ausina, Isabel
  • Cho, Soolyeon
  • Vivancos, José-Luis

Abstract

In recent years, energy efficiency and thermal comfort in historic buildings have become high-interest topics among scholars. Research has demonstrated that retrofitting buildings to current energy efficiency and thermal comfort standards is essential for improving sustainability and energy performance and for maintaining built heritage of historic structures. This study is an extensive overview of the literature surrounding this topic. This paper summarizes the different methods and techniques that have been used around the world to achieve performance refurbishments. Articles are organized based on the different building types used as case studies (residential, religious, academic and palace, museums, libraries and theaters, urban areas, and others). The results reveal that residential, religious and museum building types, especially from the last two centuries, have been most often used as case studies. Moreover, Europe, particularly Italy, is leading the research. The aim of this note is to demonstrate the feasibility of maintaining built heritage values of historic buildings while achieving significant improvements in their energy efficiency and thermal comfort.

Suggested Citation

  • Martínez-Molina, Antonio & Tort-Ausina, Isabel & Cho, Soolyeon & Vivancos, José-Luis, 2016. "Energy efficiency and thermal comfort in historic buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 70-85.
  • Handle: RePEc:eee:rensus:v:61:y:2016:i:c:p:70-85
    DOI: 10.1016/j.rser.2016.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116002537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arumägi, Endrik & Kalamees, Targo, 2014. "Analysis of energy economic renovation for historic wooden apartment buildings in cold climates," Applied Energy, Elsevier, vol. 115(C), pages 540-548.
    2. Tassiopoulou, T. & Grindley, P. C. & Probert, S. D., 1996. "Thermal behaviour of an eighteenth-century Athenian dwelling," Applied Energy, Elsevier, vol. 53(4), pages 383-398, April.
    3. Krarti, Moncef, 2015. "Evaluation of large scale building energy efficiency retrofit program in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1069-1080.
    4. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Biondi, Tommaso & Moretto, Michele, 2015. "Solar Grid Parity dynamics in Italy: A real option approach," Energy, Elsevier, vol. 80(C), pages 293-302.
    3. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    4. Vítor JPD Martinho, 2018. "A transversal perspective on global energy production and consumption: An approach based on convergence theory," Energy & Environment, , vol. 29(4), pages 556-575, June.
    5. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    6. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Zeng, Chunlei & Wu, Changchun & Zuo, Lili & Zhang, Bin & Hu, Xingqiao, 2014. "Predicting energy consumption of multiproduct pipeline using artificial neural networks," Energy, Elsevier, vol. 66(C), pages 791-798.
    8. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    9. Krarti, Moncef & Dubey, Kankana & Howarth, Nicholas, 2019. "Energy productivity analysis framework for buildings: a case study of GCC region," Energy, Elsevier, vol. 167(C), pages 1251-1265.
    10. Gireesh Nair & Leo Verde & Thomas Olofsson, 2022. "A Review on Technical Challenges and Possibilities on Energy Efficient Retrofit Measures in Heritage Buildings," Energies, MDPI, vol. 15(20), pages 1-20, October.
    11. Wang, Huan & Chen, Wenying & Shi, Jingcheng, 2018. "Low carbon transition of global building sector under 2- and 1.5-degree targets," Applied Energy, Elsevier, vol. 222(C), pages 148-157.
    12. Moncef Krarti, 2019. "Evaluation of Energy Efficiency Potential for the Building Sector in the Arab Region," Energies, MDPI, vol. 12(22), pages 1-45, November.
    13. Mazzeo, D. & Oliveti, G. & Arcuri, N., 2016. "Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime," Applied Energy, Elsevier, vol. 164(C), pages 509-531.
    14. Kong, Hui & Li, Zheng & Yu, Zhufeng & Zhang, Jun & Wang, Hongsheng & Wang, Jian & Gao, Dan, 2021. "Environmental and economic multi-objective optimization of comprehensive energy industry: A case study," Energy, Elsevier, vol. 237(C).
    15. Hamburg, Anti & Kuusk, Kalle & Mikola, Alo & Kalamees, Targo, 2020. "Realisation of energy performance targets of an old apartment building renovated to nZEB," Energy, Elsevier, vol. 194(C).
    16. Khadidja Rahmani & Atef Ahriz & Nahla Bouaziz, 2022. "Development of a New Residential Energy Management Approach for Retrofit and Transition, Based on Hybrid Energy Sources," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    17. Shin, Hansol & Kim, Tae Hyun & Kim, Hyoungtae & Lee, Sungwoo & Kim, Wook, 2019. "Environmental shutdown of coal-fired generators for greenhouse gas reduction: A case study of South Korea," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Yushen Tian & Siqin Xiong & Xiaoming Ma, 2017. "Analysis of the Potential Impacts on China’s Industrial Structure in Energy Consumption," Sustainability, MDPI, vol. 9(12), pages 1-13, December.
    19. Guisández, Ignacio & Pérez-Díaz, Juan I. & Wilhelmi, José R., 2016. "Approximate formulae for the assessment of the long-term economic impact of environmental constraints on hydropeaking," Energy, Elsevier, vol. 112(C), pages 629-641.
    20. Małgorzata Basińska & Dobrosława Kaczorek & Halina Koczyk, 2021. "Economic and Energy Analysis of Building Retrofitting Using Internal Insulations," Energies, MDPI, vol. 14(9), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:61:y:2016:i:c:p:70-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.