Thermal history and adaptation: Does a long-term indoor thermal exposure impact human thermal adaptability?
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.08.157
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Singh, Manoj Kumar & Mahapatra, Sadhan & Atreya, S.K., 2011. "Adaptive thermal comfort model for different climatic zones of North-East India," Applied Energy, Elsevier, vol. 88(7), pages 2420-2428, July.
- Ogbonna, A.C. & Harris, D.J., 2008. "Thermal comfort in sub-Saharan Africa: Field study report in Jos-Nigeria," Applied Energy, Elsevier, vol. 85(1), pages 1-11, January.
- Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
- Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2011. "Influence analysis of building types and climate zones on energetic, economic and environmental performances of BCHP systems," Applied Energy, Elsevier, vol. 88(9), pages 3097-3112.
- Yao, Runming & Liu, Jing & Li, Baizhan, 2010. "Occupants' adaptive responses and perception of thermal environment in naturally conditioned university classrooms," Applied Energy, Elsevier, vol. 87(3), pages 1015-1022, March.
- Yao, Runming & Li, Baizhan & Steemers, Koen, 2005. "Energy policy and standard for built environment in China," Renewable Energy, Elsevier, vol. 30(13), pages 1973-1988.
- Indraganti, Madhavi, 2010. "Thermal comfort in naturally ventilated apartments in summer: Findings from a field study in Hyderabad, India," Applied Energy, Elsevier, vol. 87(3), pages 866-883, March.
- Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
- Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad & Zhang, Xiliang, 2011. "Potential of renewable energy systems in China," Applied Energy, Elsevier, vol. 88(2), pages 518-525, February.
- Peeters, Leen & Dear, Richard de & Hensen, Jan & D'haeseleer, William, 2009. "Thermal comfort in residential buildings: Comfort values and scales for building energy simulation," Applied Energy, Elsevier, vol. 86(5), pages 772-780, May.
- von Grabe, Jörn, 2016. "Potential of artificial neural networks to predict thermal sensation votes," Applied Energy, Elsevier, vol. 161(C), pages 412-424.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Christiane Berger & Ardeshir Mahdavi & Eleni Ampatzi & Sarah Crosby & Runa T. Hellwig & Dolaana Khovalyg & Anna Laura Pisello & Astrid Roetzel & Adam Rysanek & Marika Vellei, 2023. "Thermal Conditions in Indoor Environments: Exploring the Reasoning behind Standard-Based Recommendations," Energies, MDPI, vol. 16(4), pages 1-22, February.
- Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
- Rongjiang Ma & Yu Fu & Mengsi Deng & Xingli Ding & Jill Baumgartner & Ming Shan & Xudong Yang, 2020. "Measurement of Personal Experienced Temperature Variations in Rural Households Using Wearable Monitors: A Pilot Study," IJERPH, MDPI, vol. 17(18), pages 1-20, September.
- Yin, Peng & Xie, Jingchao & Ji, Ying & Liu, Jiaping & Hou, Qixian & Zhao, Shanshan & Jing, Pengfei, 2023. "Winter indoor thermal environment and heating demand of low-quality centrally heated houses in cold climates," Applied Energy, Elsevier, vol. 331(C).
- Darowicki, K. & Janicka, E. & Mielniczek, M. & Zielinski, A. & Gawel, L. & Mitzel, J. & Hunger, J., 2019. "The influence of dynamic load changes on temporary impedance in hydrogen fuel cells, selection and validation of the electrical equivalent circuit," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Ghahramani, Ali & Castro, Guillermo & Karvigh, Simin Ahmadi & Becerik-Gerber, Burcin, 2018. "Towards unsupervised learning of thermal comfort using infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 41-49.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
- Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
- Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
- Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
- Zomorodian, Zahra Sadat & Tahsildoost, Mohammad & Hafezi, Mohammadreza, 2016. "Thermal comfort in educational buildings: A review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 895-906.
- Nutkiewicz, Alex & Mastrucci, Alessio & Rao, Narasimha D. & Jain, Rishee K., 2022. "Cool roofs can mitigate cooling energy demand for informal settlement dwellers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Wang, Zhe & Hong, Tianzhen, 2020. "Learning occupants’ indoor comfort temperature through a Bayesian inference approach for office buildings in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Guo, Siyue & Yan, Da & Hong, Tianzhen & Xiao, Chan & Cui, Ying, 2019. "A novel approach for selecting typical hot-year (THY) weather data," Applied Energy, Elsevier, vol. 242(C), pages 1634-1648.
- Walsh, Angélica & Cóstola, Daniel & Labaki, Lucila Chebel, 2018. "Performance-based validation of climatic zoning for building energy efficiency applications," Applied Energy, Elsevier, vol. 212(C), pages 416-427.
- Yun, Geun Young & Steemers, Koen, 2011. "Behavioural, physical and socio-economic factors in household cooling energy consumption," Applied Energy, Elsevier, vol. 88(6), pages 2191-2200, June.
- Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
- Buratti, C. & Ricciardi, P. & Vergoni, M., 2013. "HVAC systems testing and check: A simplified model to predict thermal comfort conditions in moderate environments," Applied Energy, Elsevier, vol. 104(C), pages 117-127.
- Yin, Peng & Xie, Jingchao & Ji, Ying & Liu, Jiaping & Hou, Qixian & Zhao, Shanshan & Jing, Pengfei, 2023. "Winter indoor thermal environment and heating demand of low-quality centrally heated houses in cold climates," Applied Energy, Elsevier, vol. 331(C).
- Yu, Xinqiao & Yan, Da & Sun, Kaiyu & Hong, Tianzhen & Zhu, Dandan, 2016. "Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings," Applied Energy, Elsevier, vol. 183(C), pages 725-736.
- Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.
- Buratti, C. & Palladino, D. & Ricciardi, P., 2016. "Application of a new 13-value thermal comfort scale to moderate environments," Applied Energy, Elsevier, vol. 180(C), pages 859-866.
- Bai, Lujian & Wang, Shusheng, 2019. "Definition of new thermal climate zones for building energy efficiency response to the climate change during the past decades in China," Energy, Elsevier, vol. 170(C), pages 709-719.
- Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
- Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
- Turhan, Cihan & Simani, Silvio & Gokcen Akkurt, Gulden, 2021. "Development of a personalized thermal comfort driven controller for HVAC systems," Energy, Elsevier, vol. 237(C).
More about this item
Keywords
Thermal comfort; Thermal adaptation; Thermal exposure; Thermal history; Field study;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:183:y:2016:i:c:p:22-30. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.