Characteristics and economic evaluation of a CO2-capturing repowering system with oxy-fuel combustion for utilizing exhaust gas of molten carbonate fuel cell (MCFC)
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2009.07.041
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Na & Lior, Noam, 2008. "Two novel oxy-fuel power cycles integrated with natural gas reforming and CO2 capture," Energy, Elsevier, vol. 33(2), pages 340-351.
- Pak, Pyong Sik & Suzuki, Yutaka & Kosugi, Takanobu, 1997. "A CO2-capturing hybrid power-generation system with highly efficient use of solar thermal energy," Energy, Elsevier, vol. 22(2), pages 295-299.
- Jonsson, Maria & Yan, Jinyue, 2005. "Humidified gas turbines—a review of proposed and implemented cycles," Energy, Elsevier, vol. 30(7), pages 1013-1078.
- Kosugi, Takanobu & Pak, Pyong Sik, 2003. "Economic evaluation of solar thermal hybrid H2O turbine power generation systems," Energy, Elsevier, vol. 28(3), pages 185-198.
- Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Szczęśniak, Arkadiusz & Milewski, Jarosław & Szabłowski, Łukasz & Bujalski, Wojciech & Dybiński, Olaf, 2020. "Dynamic model of a molten carbonate fuel cell 1 kW stack," Energy, Elsevier, vol. 200(C).
- Oboirien, B.O. & North, B.C. & Kleyn, T., 2014. "Techno-economic assessments of oxy-fuel technology for South African coal-fired power stations," Energy, Elsevier, vol. 66(C), pages 550-555.
- Tang, Yuting & Ma, Xiaoqian & Lai, Zhiyi & Zhou, Daoxi & Lin, Hai & Chen, Yong, 2012. "NOx and SO2 emissions from municipal solid waste (MSW) combustion in CO2/O2 atmosphere," Energy, Elsevier, vol. 40(1), pages 300-306.
- Dimopoulos, George G. & Stefanatos, Iason C. & Kakalis, Nikolaos M.P., 2013. "Exergy analysis and optimisation of a steam methane pre-reforming system," Energy, Elsevier, vol. 58(C), pages 17-27.
- Pak, Pyong Sik & Lee, Young Duk & Ahn, Kook Young, 2010. "Characteristics and economic evaluation of a power plant applying oxy-fuel combustion to increase power output and decrease CO2 emission," Energy, Elsevier, vol. 35(8), pages 3230-3238.
- Liu, Yinan & Deng, Shuai & Zhao, Ruikai & He, Junnan & Zhao, Li, 2017. "Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 652-669.
- Hnydiuk-Stefan, Anna & Składzień, Jan, 2017. "Analysis of supercritical coal fired oxy combustion power plant with cryogenic oxygen unit and turbo-compressor," Energy, Elsevier, vol. 128(C), pages 271-283.
- Wee, Jung-Ho, 2014. "Carbon dioxide emission reduction using molten carbonate fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 178-191.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pak, Pyong Sik & Lee, Young Duk & Ahn, Kook Young, 2010. "Characteristics and economic evaluation of a power plant applying oxy-fuel combustion to increase power output and decrease CO2 emission," Energy, Elsevier, vol. 35(8), pages 3230-3238.
- Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
- Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
- Ye, Xuemin & Wang, Jia & Li, Chunxi, 2016. "Performance and emission reduction potential of renewable energy aided coal-fired power generation systems," Energy, Elsevier, vol. 113(C), pages 966-979.
- Wu, Jiafeng & Chen, Yaping & Zhu, Zilong & Mei, Xianzhi & Zhang, Shaobo & Zhang, Baohuai, 2017. "Performance simulation on NG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture," Applied Energy, Elsevier, vol. 196(C), pages 68-81.
- Zhu, Zilong & Chen, Yaping & Wu, Jiafeng & Zhang, Shaobo & Zheng, Shuxing, 2019. "A modified Allam cycle without compressors realizing efficient power generation with peak load shifting and CO2 capture," Energy, Elsevier, vol. 174(C), pages 478-487.
- Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Han, Yixiao & Liang, Ying, 2018. "Study on the configuration of bottom cycle in natural gas combined cycle power plants integrated with oxy-fuel combustion," Applied Energy, Elsevier, vol. 212(C), pages 465-477.
- Luo, Chending & Zhang, Na & Lior, Noam & Lin, Hu, 2011. "Proposal and analysis of a dual-purpose system integrating a chemically recuperated gas turbine cycle with thermal seawater desalination," Energy, Elsevier, vol. 36(6), pages 3791-3803.
- Jamel, M.S. & Abd Rahman, A. & Shamsuddin, A.H., 2013. "Advances in the integration of solar thermal energy with conventional and non-conventional power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 71-81.
- Gou, Chenhua & Cai, Ruixian & Hong, Hui, 2007. "A novel hybrid oxy-fuel power cycle utilizing solar thermal energy," Energy, Elsevier, vol. 32(9), pages 1707-1714.
- Burdyny, Thomas & Struchtrup, Henning, 2010. "Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process," Energy, Elsevier, vol. 35(5), pages 1884-1897.
- Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015.
"Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model,"
Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
- Jian-Lei Mo & Joachim Schleich & Lei Zhu & Ying Fan, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Grenoble Ecole de Management (Post-Print) hal-01265934, HAL.
- Jian-Lei Mo & Joachim Schleich & Lei Zhu & Ying Fan, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Post-Print hal-01265934, HAL.
- Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
- Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi, 2009. "A new approach for enhancing performance of a gas turbine (case study: Khangiran refinery)," Applied Energy, Elsevier, vol. 86(12), pages 2750-2759, December.
- Gunasekaran, S. & Mancini, N.D. & El-Khaja, R. & Sheu, E.J. & Mitsos, A., 2014. "Solar–thermal hybridization of advanced zero emissions power cycle," Energy, Elsevier, vol. 65(C), pages 152-165.
- Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.
- Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
- Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.
- Khalilpour, Rajab, 2014. "Multi-level investment planning and scheduling under electricity and carbon market dynamics: Retrofit of a power plant with PCC (post-combustion carbon capture) processes," Energy, Elsevier, vol. 64(C), pages 172-186.
- Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
More about this item
Keywords
Oxy-combustion; MCFC; Waste heat; H2O turbine; Repowering system; Economic evaluation;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:11:p:1903-1909. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.