Enhancement aspects of single stage absorption cooling cycle: A detailed review
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2016.11.231
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liu, Meng & Zhang, Na, 2007. "Proposal and analysis of a novel ammonia–water cycle for power and refrigeration cogeneration," Energy, Elsevier, vol. 32(6), pages 961-970.
- Sarkar, Jahar, 2012. "Ejector enhanced vapor compression refrigeration and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6647-6659.
- Sumeru, K. & Nasution, H. & Ani, F.N., 2012. "A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4927-4937.
- Vereda, C. & Ventas, R. & Lecuona, A. & Venegas, M., 2012. "Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions," Applied Energy, Elsevier, vol. 97(C), pages 305-312.
- Jawahar, C.P. & Saravanan, R., 2010. "Generator absorber heat exchange based absorption cycle--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2372-2382, October.
- Abdulateef, J.M. & Sopian, K. & Alghoul, M.A. & Sulaiman, M.Y., 2009. "Review on solar-driven ejector refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1338-1349, August.
- Ramesh kumar, A. & Udayakumar, M., 2008. "Studies of compressor pressure ratio effect on GAXAC (generator-absorber-exchange absorption compression) cooler," Applied Energy, Elsevier, vol. 85(12), pages 1163-1172, December.
- Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "An overview of ammonia-based absorption chillers and heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 681-707.
- Levy, A. & Jelinek, M. & Borde, I., 2002. "Numerical study on the design parameters of a jet ejector for absorption systems," Applied Energy, Elsevier, vol. 72(2), pages 467-478, June.
- Zheng, Danxing & Chen, Bin & Qi, Yun & Jin, Hongguang, 2006. "Thermodynamic analysis of a novel absorption power/cooling combined-cycle," Applied Energy, Elsevier, vol. 83(4), pages 311-323, April.
- Yin, Juan & Shi, Lin & Zhu, Ming-Shan & Han, Li-Zhong, 2000. "Performance analysis of an absorption heat transformer with different working fluid combinations," Applied Energy, Elsevier, vol. 67(3), pages 281-292, November.
- Sun, Liuli & Han, Wei & Jing, Xuye & Zheng, Danxing & Jin, Hongguang, 2013. "A power and cooling cogeneration system using mid/low-temperature heat source," Applied Energy, Elsevier, vol. 112(C), pages 886-897.
- Chen, Xiangjie & Worall, Mark & Omer, Siddig & Su, Yuehong & Riffat, Saffa, 2013. "Theoretical studies of a hybrid ejector CO2 compression cooling system for vehicles and preliminary experimental investigations of an ejector cycle," Applied Energy, Elsevier, vol. 102(C), pages 931-942.
- Du, S. & Wang, R.Z. & Xia, Z.Z., 2014. "Optimal ammonia water absorption refrigeration cycle with maximum internal heat recovery derived from pinch technology," Energy, Elsevier, vol. 68(C), pages 862-869.
- Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
- Levy, A. & Jelinek, M. & Borde, I. & Ziegler, F., 2004. "Performance of an advanced absorption cycle with R125 and different absorbents," Energy, Elsevier, vol. 29(12), pages 2501-2515.
- Horuz, Ilhami & Kurt, Bener, 2010. "Absorption heat transformers and an industrial application," Renewable Energy, Elsevier, vol. 35(10), pages 2175-2181.
- Srikhirin, Pongsid & Aphornratana, Satha & Chungpaibulpatana, Supachart, 2001. "A review of absorption refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 343-372, December.
- Chen, Li-Ting, 1988. "A new ejector-absorber cycle to improve the COP of an absorption refrigeration system," Applied Energy, Elsevier, vol. 30(1), pages 37-51.
- Wu, Shenyi & Eames, Ian W., 2000. "Innovations in vapour-absorption cycles," Applied Energy, Elsevier, vol. 66(3), pages 251-266, July.
- Chen, Xiangjie & Omer, Siddig & Worall, Mark & Riffat, Saffa, 2013. "Recent developments in ejector refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 629-651.
- Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
- Chunnanond, Kanjanapon & Aphornratana, Satha, 2004. "Ejectors: applications in refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(2), pages 129-155, April.
- Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
- Jelinek, M. & Levy, A. & Borde, I., 2002. "Performance of a triple-pressure-level absorption cycle with R125-N,N'-dimethylethylurea," Applied Energy, Elsevier, vol. 71(3), pages 171-189, March.
- Lin, P. & Wang, R.Z. & Xia, Z.Z., 2011. "Numerical investigation of a two-stage air-cooled absorption refrigeration system for solar cooling: Cycle analysis and absorption cooling performances," Renewable Energy, Elsevier, vol. 36(5), pages 1401-1412.
- Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
- Wang, Xin & Shi, Lin & Yin, Juan & Zhu, Ming-Shan, 2002. "A two-stage heat transformer with H2O/LiBr for the first stage and 2,2,2-trifluoroethanol(TFE)/N-methy1-2-pyrrolidone (NMP) for the second stage," Applied Energy, Elsevier, vol. 71(3), pages 235-249, March.
- Yari, Mortaza & Zarin, Arash & Mahmoudi, S.M.S., 2011. "Energy and exergy analyses of GAX and GAX hybrid absorption refrigeration cycles," Renewable Energy, Elsevier, vol. 36(7), pages 2011-2020.
- Moreno-Quintanar, G. & Rivera, W. & Best, R., 2012. "Comparison of the experimental evaluation of a solar intermittent refrigeration system for ice production operating with the mixtures NH3/LiNO3 and NH3/LiNO3/H2O," Renewable Energy, Elsevier, vol. 38(1), pages 62-68.
- Anand, S. & Gupta, A. & Tyagi, S.K., 2013. "Simulation studies of refrigeration cycles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 260-277.
- Xu, Xiao Xiao & Chen, Guang Ming & Tang, Li Ming & Zhu, Zhi Jiang, 2012. "Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure," Energy, Elsevier, vol. 44(1), pages 870-877.
- Du, S. & Wang, R.Z. & Lin, P. & Xu, Z.Z. & Pan, Q.W. & Xu, S.C., 2012. "Experimental studies on an air-cooled two-stage NH3-H2O solar absorption air-conditioning prototype," Energy, Elsevier, vol. 45(1), pages 581-587.
- Sun, Da-Wen, 1996. "Variable geometry ejectors and their applications in ejector refrigeration systems," Energy, Elsevier, vol. 21(10), pages 919-929.
- Rivera, W. & Huicochea, A. & Martínez, H. & Siqueiros, J. & Juárez, D. & Cadenas, E., 2011. "Exergy analysis of an experimental heat transformer for water purification," Energy, Elsevier, vol. 36(1), pages 320-327.
- Vidal, A. & Best, R. & Rivero, R. & Cervantes, J., 2006. "Analysis of a combined power and refrigeration cycle by the exergy method," Energy, Elsevier, vol. 31(15), pages 3401-3414.
- Sankarlal, T. & Mani, A., 2007. "Experimental investigations on ejector refrigeration system with ammonia," Renewable Energy, Elsevier, vol. 32(8), pages 1403-1413.
- Lee, Jin Ki & Lee, Kyoung-Ryul & Kang, Yong Tae, 2014. "Development of binary nanoemulsion to apply for diffusion absorption refrigerator as a new refrigerant," Energy, Elsevier, vol. 78(C), pages 693-700.
- Ghaddar, N.K. & Shihab, M. & Bdeir, F., 1997. "Modeling and simulation of solar absorption system performance in Beirut," Renewable Energy, Elsevier, vol. 10(4), pages 539-558.
- Lin, Chen & Cai, Wenjian & Li, Yanzhong & Yan, Jia & Hu, Yu, 2012. "The characteristics of pressure recovery in an adjustable ejector multi-evaporator refrigeration system," Energy, Elsevier, vol. 46(1), pages 148-155.
- Le Lostec, Brice & Galanis, Nicolas & Millette, Jocelyn, 2013. "Simulation of an ammonia–water absorption chiller," Renewable Energy, Elsevier, vol. 60(C), pages 269-283.
- Yu, Zeting & Han, Jitian & Liu, Hai & Zhao, Hongxia, 2014. "Theoretical study on a novel ammonia–water cogeneration system with adjustable cooling to power ratios," Applied Energy, Elsevier, vol. 122(C), pages 53-61.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhai, Chong & Wu, Wei & Coronas, Alberto, 2021. "Membrane-based absorption cooling and heating: Development and perspectives," Renewable Energy, Elsevier, vol. 177(C), pages 663-688.
- Karolina Weremijewicz & Andrzej Gajewski, 2021. "Measurement Uncertainty Estimation for Laser Doppler Anemometer," Energies, MDPI, vol. 14(13), pages 1-11, June.
- Hamza K. Mukhtar & Saud Ghani, 2021. "Hybrid Ejector-Absorption Refrigeration Systems: A Review," Energies, MDPI, vol. 14(20), pages 1-31, October.
- Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
- Yeudiel Garcíadealva & Roberto Best & Víctor Hugo Gómez & Alejandro Vargas & Wilfrido Rivera & José Camilo Jiménez-García, 2021. "A Cascade Proportional Integral Derivative Control for a Plate-Heat-Exchanger-Based Solar Absorption Cooling System," Energies, MDPI, vol. 14(13), pages 1-20, July.
- Sehgal, Shitiz & Alvarado, Jorge L. & Hassan, Ibrahim G. & Kadam, Sambhaji T., 2021. "A comprehensive review of recent developments in falling-film, spray, bubble and microchannel absorbers for absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
- Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
- Kadam, Sambhaji T. & Kyriakides, Alexios-Spyridon & Khan, Muhammad Saad & Shehabi, Mohammad & Papadopoulos, Athanasios I. & Hassan, Ibrahim & Rahman, Mohammad Azizur & Seferlis, Panos, 2022. "Thermo-economic and environmental assessment of hybrid vapor compression-absorption refrigeration systems for district cooling," Energy, Elsevier, vol. 243(C).
- Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
- Zhai, Chong & Wu, Wei, 2021. "Performance optimization and comparison towards compact and efficient absorption refrigeration system with conventional and emerging absorbers/desorbers," Energy, Elsevier, vol. 229(C).
- Liang, Xiao & Zhou, Sai & Deng, Jiaju & He, Guogeng & Cai, Dehua, 2019. "Thermodynamic analysis of a novel combined double ejector-absorption refrigeration system using ammonia/salt working pairs without mechanical pumps," Energy, Elsevier, vol. 185(C), pages 895-909.
- Reda, Francesco & Paiho, Satu & Pasonen, Riku & Helm, Martin & Menhart, Florian & Schex, Richard & Laitinen, Ari, 2020. "Comparison of solar assisted heat pump solutions for office building applications in Northern climate," Renewable Energy, Elsevier, vol. 147(P1), pages 1392-1417.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
- Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
- Li, Huashan & Cao, Fei & Bu, Xianbiao & Wang, Lingbao & Wang, Xianlong, 2014. "Performance characteristics of R1234yf ejector-expansion refrigeration cycle," Applied Energy, Elsevier, vol. 121(C), pages 96-103.
- Wu, Wei & Shi, Wenxing & Wang, Jian & Wang, Baolong & Li, Xianting, 2016. "Experimental investigation on NH3–H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources," Applied Energy, Elsevier, vol. 176(C), pages 258-271.
- Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "An overview of ammonia-based absorption chillers and heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 681-707.
- Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
- Vereda, C. & Ventas, R. & Lecuona, A. & Venegas, M., 2012. "Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions," Applied Energy, Elsevier, vol. 97(C), pages 305-312.
- Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
- Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
- Han, Wei & Chen, Qiang & Sun, Liuli & Ma, Sijun & Zhao, Ting & Zheng, Danxing & Jin, Hongguang, 2014. "Experimental studies on a combined refrigeration/power generation system activated by low-grade heat," Energy, Elsevier, vol. 74(C), pages 59-66.
- Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
- Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
- Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
- Donnellan, Philip & Cronin, Kevin & Byrne, Edmond, 2015. "Recycling waste heat energy using vapour absorption heat transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1290-1304.
- Baby-Jean Robert Mungyeko Bisulandu & Rami Mansouri & Adrian Ilinca, 2023. "Diffusion Absorption Refrigeration Systems: An Overview of Thermal Mechanisms and Models," Energies, MDPI, vol. 16(9), pages 1-36, April.
- Garousi Farshi, L. & Mosaffa, A.H. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Thermodynamic analysis and comparison of combined ejector–absorption and single effect absorption refrigeration systems," Applied Energy, Elsevier, vol. 133(C), pages 335-346.
- Chen, Xiangjie & Omer, Siddig & Worall, Mark & Riffat, Saffa, 2013. "Recent developments in ejector refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 629-651.
- Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
- Du, Yang & Dai, Yiping, 2018. "Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle," Energy, Elsevier, vol. 161(C), pages 233-250.
- Du, S. & Wang, R.Z. & Xia, Z.Z., 2015. "Graphical analysis on internal heat recovery of a single stage ammonia–water absorption refrigeration system," Energy, Elsevier, vol. 80(C), pages 687-694.
More about this item
Keywords
Single stage absorption cooling cycle; Sub-component/supported components; Internal heat recovery (streamlines re-arrangement); Enhancement options of working fluids; Performance enhancement;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:1010-1045. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.