IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v53y2016icp373-407.html
   My bibliography  Save this article

Ejector refrigeration: A comprehensive review

Author

Listed:
  • Besagni, Giorgio
  • Mereu, Riccardo
  • Inzoli, Fabio

Abstract

The increasing need for thermal comfort has led to a rapid increase in the use of cooling systems and, consequently, electricity demand for air-conditioning systems in buildings. Heat-driven ejector refrigeration systems appear to be a promising alternative to the traditional compressor-based refrigeration technologies for energy consumption reduction. This paper presents a comprehensive literature review on ejector refrigeration systems and working fluids. It deeply analyzes ejector technology and behavior, refrigerant properties and their influence over ejector performance and all of the ejector refrigeration technologies, with a focus on past, present and future trends. The review is structured in four parts. In the first part, ejector technology is described. In the second part, a detailed description of the refrigerant properties and their influence over ejector performance is presented. In the third part, a review focused on the main jet refrigeration cycles is proposed, and the ejector refrigeration systems are reported and categorized. Finally, an overview over all ejector technologies, the relationship among the working fluids and the ejector performance, with a focus on past, present and future trends, is presented.

Suggested Citation

  • Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
  • Handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:373-407
    DOI: 10.1016/j.rser.2015.08.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115009223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.08.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szabolcs Varga & Armando C. Oliveira & Bogdan Diaconu, 2009. "Analysis of a solar-assisted ejector cooling system for air conditioning," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 4(1), pages 2-8, March.
    2. Diaconu, Bogdan M., 2012. "Energy analysis of a solar-assisted ejector cycle air conditioning system with low temperature thermal energy storage," Renewable Energy, Elsevier, vol. 37(1), pages 266-276.
    3. Li, C.H. & Wang, R.Z. & Lu, Y.Z., 2002. "Investigation of a novel combined cycle of solar powered adsorption–ejection refrigeration system," Renewable Energy, Elsevier, vol. 26(4), pages 611-622.
    4. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    5. Li, Huashan & Cao, Fei & Bu, Xianbiao & Wang, Lingbao & Wang, Xianlong, 2014. "Performance characteristics of R1234yf ejector-expansion refrigeration cycle," Applied Energy, Elsevier, vol. 121(C), pages 96-103.
    6. Chen, Li-Ting, 1988. "A new ejector-absorber cycle to improve the COP of an absorption refrigeration system," Applied Energy, Elsevier, vol. 30(1), pages 37-51.
    7. Ameri, Mohammad & Behbahaninia, Ali & Tanha, Amir Abbas, 2010. "Thermodynamic analysis of a tri-generation system based on micro-gas turbine with a steam ejector refrigeration system," Energy, Elsevier, vol. 35(5), pages 2203-2209.
    8. Chen, Xiangjie & Omer, Siddig & Worall, Mark & Riffat, Saffa, 2013. "Recent developments in ejector refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 629-651.
    9. Chunnanond, Kanjanapon & Aphornratana, Satha, 2004. "Ejectors: applications in refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(2), pages 129-155, April.
    10. Hong, Woo Jong & Alhussan, Khaled & Zhang, Hongfang & Garris, Charles A., 2004. "A novel thermally driven rotor-vane/pressure-exchange ejector refrigeration system with environmental benefits and energy efficiency," Energy, Elsevier, vol. 29(12), pages 2331-2345.
    11. Ziapour, Behrooz M. & Abbasy, Ahad, 2010. "First and second laws analysis of the heat pipe/ejector refrigeration cycle," Energy, Elsevier, vol. 35(8), pages 3307-3314.
    12. Jelinek, M. & Levy, A. & Borde, I., 2002. "Performance of a triple-pressure-level absorption cycle with R125-N,N'-dimethylethylurea," Applied Energy, Elsevier, vol. 71(3), pages 171-189, March.
    13. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    14. Chen, Jianyong & Jarall, Sad & Havtun, Hans & Palm, Björn, 2015. "A review on versatile ejector applications in refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 67-90.
    15. Zhu, Yinhai & Jiang, Peixue, 2014. "Bypass ejector with an annular cavity in the nozzle wall to increase the entrainment: Experimental and numerical validation," Energy, Elsevier, vol. 68(C), pages 174-181.
    16. Wang, Jiangfeng & Dai, Yiping & Zhang, Taiyong & Ma, Shaolin, 2009. "Parametric analysis for a new combined power and ejector–absorption refrigeration cycle," Energy, Elsevier, vol. 34(10), pages 1587-1593.
    17. He, S. & Li, Y. & Wang, R.Z., 2009. "Progress of mathematical modeling on ejectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1760-1780, October.
    18. Sarkar, Jahar, 2012. "Ejector enhanced vapor compression refrigeration and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6647-6659.
    19. Reddick, Christopher & Sorin, Mikhail & Rheault, Fernand, 2014. "Energy savings in CO2 (carbon dioxide) capture using ejectors for waste heat upgrading," Energy, Elsevier, vol. 65(C), pages 200-208.
    20. Ersoy, H. Kursad & Yalcin, Sakir & Yapici, Rafet & Ozgoren, Muammer, 2007. "Performance of a solar ejector cooling-system in the southern region of Turkey," Applied Energy, Elsevier, vol. 84(9), pages 971-983, September.
    21. Sumeru, K. & Nasution, H. & Ani, F.N., 2012. "A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4927-4937.
    22. Vereda, C. & Ventas, R. & Lecuona, A. & Venegas, M., 2012. "Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions," Applied Energy, Elsevier, vol. 97(C), pages 305-312.
    23. Alexis, G.K. & Karayiannis, E.K., 2005. "A solar ejector cooling system using refrigerant R134a in the Athens area," Renewable Energy, Elsevier, vol. 30(9), pages 1457-1469.
    24. Abdulateef, J.M. & Sopian, K. & Alghoul, M.A. & Sulaiman, M.Y., 2009. "Review on solar-driven ejector refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1338-1349, August.
    25. Yang, Jun Lan & Ma, Yi Tai & Li, Min Xia & Guan, Hai Qing, 2005. "Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander," Energy, Elsevier, vol. 30(7), pages 1162-1175.
    26. Bai, Tao & Yan, Gang & Yu, Jianlin, 2015. "Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector," Energy, Elsevier, vol. 84(C), pages 325-335.
    27. Garousi Farshi, L. & Mosaffa, A.H. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Thermodynamic analysis and comparison of combined ejector–absorption and single effect absorption refrigeration systems," Applied Energy, Elsevier, vol. 133(C), pages 335-346.
    28. Zhu, Lin & Yu, Jianlin & Zhou, Mengliu & Wang, Xiao, 2014. "Performance analysis of a novel dual-nozzle ejector enhanced cycle for solar assisted air-source heat pump systems," Renewable Energy, Elsevier, vol. 63(C), pages 735-740.
    29. Zilio, Claudio & Brown, J. Steven & Schiochet, Giovanni & Cavallini, Alberto, 2011. "The refrigerant R1234yf in air conditioning systems," Energy, Elsevier, vol. 36(10), pages 6110-6120.
    30. Wang, Xiao & Yu, Jianlin & Zhou, Mengliu & Lv, Xiaolong, 2014. "Comparative studies of ejector-expansion vapor compression refrigeration cycles for applications in domestic refrigerator-freezers," Energy, Elsevier, vol. 70(C), pages 635-642.
    31. Sözen, Adnan & Kurt, Mustafa & Akçayol, M.Ali & Özalp, Mehmet, 2004. "Performance prediction of a solar driven ejector-absorption cycle using fuzzy logic," Renewable Energy, Elsevier, vol. 29(1), pages 53-71.
    32. Li, Xinguo & Zhao, Cuicui & Hu, Xiaochen, 2012. "Thermodynamic analysis of Organic Rankine Cycle with Ejector," Energy, Elsevier, vol. 42(1), pages 342-349.
    33. Yu, Jianlin & Du, Zhenxing, 2010. "Theoretical study of a transcritical ejector refrigeration cycle with refrigerant R143a," Renewable Energy, Elsevier, vol. 35(9), pages 2034-2039.
    34. Liu, Fang & Groll, Eckhard A. & Li, Daqing, 2012. "Investigation on performance of variable geometry ejectors for CO2 refrigeration cycles," Energy, Elsevier, vol. 45(1), pages 829-839.
    35. Yang, Xingyang & Zhao, Li & Li, Hailong & Yu, Zhixin, 2015. "Theoretical analysis of a combined power and ejector refrigeration cycle using zeotropic mixture," Applied Energy, Elsevier, vol. 160(C), pages 912-919.
    36. R. Boukhanouf & J. Godefroy & S. B. Riffat & M. Worall, 2008. "Design and optimisation of a small-scale tri-generation system," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 3(1), pages 32-43, January.
    37. Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2008. "Parametric analysis and optimization for a combined power and refrigeration cycle," Applied Energy, Elsevier, vol. 85(11), pages 1071-1085, November.
    38. Anand, S. & Gupta, A. & Tyagi, S.K., 2015. "Solar cooling systems for climate change mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 143-161.
    39. Sözen, Adnan & Özalp, Mehmet, 2005. "Solar-driven ejector-absorption cooling system," Applied Energy, Elsevier, vol. 80(1), pages 97-113, January.
    40. Lin, Chen & Cai, Wenjian & Li, Yanzhong & Yan, Jia & Hu, Yu, 2012. "Pressure recovery ratio in a variable cooling loads ejector-based multi-evaporator refrigeration system," Energy, Elsevier, vol. 44(1), pages 649-656.
    41. Sun, Da-Wen, 1996. "Variable geometry ejectors and their applications in ejector refrigeration systems," Energy, Elsevier, vol. 21(10), pages 919-929.
    42. Sankarlal, T. & Mani, A., 2007. "Experimental investigations on ejector refrigeration system with ammonia," Renewable Energy, Elsevier, vol. 32(8), pages 1403-1413.
    43. Sharifi, Navid & Sharifi, Majid, 2014. "Reducing energy consumption of a steam ejector through experimental optimization of the nozzle geometry," Energy, Elsevier, vol. 66(C), pages 860-867.
    44. Chen, Jianyong & Havtun, Hans & Palm, Björn, 2015. "Conventional and advanced exergy analysis of an ejector refrigeration system," Applied Energy, Elsevier, vol. 144(C), pages 139-151.
    45. Kim, Beomjoo & Kim, Do Hyung & Lee, Junghyun & Kang, Seung Won & Lim, Hee Chun, 2012. "The operation results of a 125 kW molten carbonate fuel cell system," Renewable Energy, Elsevier, vol. 42(C), pages 145-151.
    46. Wang, Xiaodong & Dong, Jingliang & Li, Ao & Lei, Hongjian & Tu, Jiyuan, 2014. "Numerical study of primary steam superheating effects on steam ejector flow and its pumping performance," Energy, Elsevier, vol. 78(C), pages 205-211.
    47. Diaconu, Bogdan M. & Varga, Szabolcs & Oliveira, Armando C., 2011. "Numerical simulation of a solar-assisted ejector air conditioning system with cold storage," Energy, Elsevier, vol. 36(2), pages 1280-1291.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiangjie & Omer, Siddig & Worall, Mark & Riffat, Saffa, 2013. "Recent developments in ejector refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 629-651.
    2. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    3. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.
    4. Chen, Jianyong & Jarall, Sad & Havtun, Hans & Palm, Björn, 2015. "A review on versatile ejector applications in refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 67-90.
    5. Braimakis, Konstantinos, 2021. "Solar ejector cooling systems: A review," Renewable Energy, Elsevier, vol. 164(C), pages 566-602.
    6. Bai, Tao & Yan, Gang & Yu, Jianlin, 2015. "Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector," Energy, Elsevier, vol. 84(C), pages 325-335.
    7. Zhang, Kun & Chen, Xue & Markides, Christos N. & Yang, Yong & Shen, Shengqiang, 2016. "Evaluation of ejector performance for an organic Rankine cycle combined power and cooling system," Applied Energy, Elsevier, vol. 184(C), pages 404-412.
    8. Zhang, Sheng & Cheng, Yong, 2017. "Performance improvement of an ejector cooling system with thermal pumping effect (ECSTPE) by doubling evacuation chambers in parallel," Applied Energy, Elsevier, vol. 187(C), pages 675-688.
    9. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    10. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    11. Miri, Seyedeh Mohadeseh & Farzaneh-Gord, Mahmood & Kianifar, Ali, 2023. "Triple-objective MPSO of zeotropic-fluid solar ejector cycle integrated with cold storage tank based on techno-economic criteria," Energy, Elsevier, vol. 283(C).
    12. Li, Huashan & Cao, Fei & Bu, Xianbiao & Wang, Lingbao & Wang, Xianlong, 2014. "Performance characteristics of R1234yf ejector-expansion refrigeration cycle," Applied Energy, Elsevier, vol. 121(C), pages 96-103.
    13. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    14. Yan, Gang & Bai, Tao & Yu, Jianlin, 2016. "Thermodynamic analysis on a modified ejector expansion refrigeration cycle with zeotropic mixture (R290/R600a) for freezers," Energy, Elsevier, vol. 95(C), pages 144-154.
    15. Yilmaz, Tuncay & Erdinç, Mehmet Tahir, 2019. "Energetic and exergetic investigation of a novel refrigeration system utilizing ejector integrated subcooling using different refrigerants," Energy, Elsevier, vol. 168(C), pages 712-727.
    16. Haghparast, Payam & Sorin, Mikhail V. & Nesreddine, Hakim, 2018. "The impact of internal ejector working characteristics and geometry on the performance of a refrigeration cycle," Energy, Elsevier, vol. 162(C), pages 728-743.
    17. Shan, Yong & Zhang, Jing-zhou & Ren, Xiao-wen, 2018. "Numerical modeling on pumping performance of piccolo-tube multi-nozzles supersonic ejector in an oil radiator passage," Energy, Elsevier, vol. 158(C), pages 216-227.
    18. Liu, Ye & Yu, Jianlin, 2018. "Performance analysis of an advanced ejector-expansion autocascade refrigeration cycle," Energy, Elsevier, vol. 165(PB), pages 859-867.
    19. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    20. Chen, Xiangjie & Worall, Mark & Omer, Siddig & Su, Yuehong & Riffat, Saffa, 2013. "Theoretical studies of a hybrid ejector CO2 compression cooling system for vehicles and preliminary experimental investigations of an ejector cycle," Applied Energy, Elsevier, vol. 102(C), pages 931-942.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:373-407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.