IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v30y1988i1p37-51.html
   My bibliography  Save this article

A new ejector-absorber cycle to improve the COP of an absorption refrigeration system

Author

Listed:
  • Chen, Li-Ting

Abstract

A modified ejector-absorber absorption refrigeration cycle is presented and analysed. Results for an R-22/DME-TEG system with a 0·5 heat-exchanger effectiveness and a 0·85 nozzle (diffuser) efficiency are computed for the conventional as well as the modified cycle. A considerable improvement in COP is observed for the latter.

Suggested Citation

  • Chen, Li-Ting, 1988. "A new ejector-absorber cycle to improve the COP of an absorption refrigeration system," Applied Energy, Elsevier, vol. 30(1), pages 37-51.
  • Handle: RePEc:eee:appene:v:30:y:1988:i:1:p:37-51
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0306-2619(88)90053-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    2. Kumar, Anil & Modi, Anish, 2022. "Thermodynamic analysis of novel ejector-assisted vapour absorption-resorption refrigeration systems," Energy, Elsevier, vol. 244(PB).
    3. Farshi, L. Garousi & Khalili, S., 2019. "Thermoeconomic analysis of a new ejector boosted hybrid heat pump (EBHP) and comparison with three conventional types of heat pumps," Energy, Elsevier, vol. 170(C), pages 619-635.
    4. Almahmoud, Hamad A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Ben Mansour, Ridha & Alkhulaifi, Yousif M., 2021. "Energetic performance analysis of a solar-driven hybrid ejector cooling and humidification-dehumidification desalination system," Energy, Elsevier, vol. 230(C).
    5. Li, Huashan & Cao, Fei & Bu, Xianbiao & Wang, Lingbao & Wang, Xianlong, 2014. "Performance characteristics of R1234yf ejector-expansion refrigeration cycle," Applied Energy, Elsevier, vol. 121(C), pages 96-103.
    6. Srikhirin, Pongsid & Aphornratana, Satha & Chungpaibulpatana, Supachart, 2001. "A review of absorption refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 343-372, December.
    7. Vereda, C. & Ventas, R. & Lecuona, A. & Venegas, M., 2012. "Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions," Applied Energy, Elsevier, vol. 97(C), pages 305-312.
    8. Levy, A. & Jelinek, M. & Borde, I., 2002. "Numerical study on the design parameters of a jet ejector for absorption systems," Applied Energy, Elsevier, vol. 72(2), pages 467-478, June.
    9. Jelinek, M. & Levy, A. & Borde, I., 2002. "Performance of a triple-pressure-level absorption cycle with R125-N,N'-dimethylethylurea," Applied Energy, Elsevier, vol. 71(3), pages 171-189, March.
    10. Kumar, Anil & Modi, Anish, 2023. "Energy and exergy analysis of a novel ejector-assisted compression–absorption–resorption refrigeration system," Energy, Elsevier, vol. 263(PC).
    11. Wu, Shenyi & Eames, Ian W., 2000. "Innovations in vapour-absorption cycles," Applied Energy, Elsevier, vol. 66(3), pages 251-266, July.
    12. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.
    13. Shi, Lin & Yin, Juan & Wang, Xin & Zhu, Ming-Shan, 2001. "Study on a new ejection-absorption heat transformer," Applied Energy, Elsevier, vol. 68(2), pages 161-171, February.
    14. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:30:y:1988:i:1:p:37-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.