IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v74y2017icp616-637.html
   My bibliography  Save this article

Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products

Author

Listed:
  • Kambezidis, H.D.
  • Psiloglou, B.E.
  • Karagiannis, D.
  • Dumka, U.C.
  • Kaskaoutis, D.G.

Abstract

This work reviews techniques and models for solar radiation simulations and communicates further improvements performed in the Meteorological Radiation Model (MRM) developed at the National Observatory of Athens. The new version (MRM v6.1) considers a forward to-the-ground scattering as a function of solar altitude for the diffuse radiation estimates, while concurrently uses two running codes i.e., with sunshine duration as input (MRM v6.1a) and with cloud products (MRM v6.1b). The new scattering function leads to increase in diffuse radiation, especially for low zenith angles, and to better simulations with the measured diffuse (RMSE=36.3% and MBE=6.5%, against RMSE=42.0% and MBE=22.3% for the latest MRM v6). These changes lead also to better simulations of global radiation (RMSE=8.7% against RMSE=9.5% for MRM v6), while the direct radiation is not affected. The accuracy in the simulations increases significantly for clear-sky conditions, while it shows a small dependence on aerosol amount and solar altitude. Furthermore, in the sub-version MRM v6.1b the calculations for the cloud transmittance have been modified to allow for the inclusion of cloud products as inputs in case of non-availability of sunshine duration data. In this study, MRM v6.1b uses MERRA retrievals of cloud optical depth and cloud fraction for calculations of the cloud transmittance; these parameters usually lead to significant uncertainties in the simulations of the hourly direct and global radiations, especially for large cloud fractions. This indicates the need for high spatial and temporal resolution satellite data of cloudiness for accurate estimations of solar radiation under cloudy conditions and highlights the incapability of radiative transfer models on such simulations. However, on monthly basis both MRM v6.1a and v6.1b provide high accuracy in solar radiation estimates, thus rendering MRM v6.1 as a powerful tool for solar energy applications.

Suggested Citation

  • Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
  • Handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:616-637
    DOI: 10.1016/j.rser.2017.02.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117302770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.02.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2012. "A review of solar energy modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2864-2869.
    2. Eltbaakh, Yousef A. & Ruslan, M.H. & Alghoul, M.A. & Othman, M.Y. & Sopian, K., 2012. "Issues concerning atmospheric turbidity indices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6285-6294.
    3. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2016. "Recent improvements of the Meteorological Radiation Model for solar irradiance estimates under all-sky conditions," Renewable Energy, Elsevier, vol. 93(C), pages 142-158.
    4. Hay, John E., 1993. "Satellite based estimates of solar irradiance at the earth's surface—II. Mapping of solar radiation," Renewable Energy, Elsevier, vol. 3(4), pages 395-398.
    5. Hay, John E., 1993. "Satellite based estimates of solar irradiance at the earth's surface—I. Modelling approaches," Renewable Energy, Elsevier, vol. 3(4), pages 381-393.
    6. Bahel, V. & Srinivasan, R. & Bakhsh, H., 1987. "Statistical comparison of correlations for estimation of global horizontal solar radiation," Energy, Elsevier, vol. 12(12), pages 1309-1316.
    7. Linares-Rodriguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2013. "An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images," Energy, Elsevier, vol. 61(C), pages 636-645.
    8. Muneer, T. & Younes, S. & Munawwar, S., 2007. "Discourses on solar radiation modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 551-602, May.
    9. Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2015. "Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1093-1106.
    10. Olatomiwa, Lanre & Mekhilef, Saad & Shamshirband, Shahaboddin & Petković, Dalibor, 2015. "Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1784-1791.
    11. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    12. Li, Huashan & Bu, Xianbiao & Lian, Yongwang & Zhao, Liang & Ma, Weibin, 2012. "Further investigation of empirically derived models with multiple predictors in estimating monthly average daily diffuse solar radiation over China," Renewable Energy, Elsevier, vol. 44(C), pages 469-473.
    13. Almorox, J. & Hontoria, C. & Benito, M., 2011. "Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain)," Applied Energy, Elsevier, vol. 88(5), pages 1703-1709, May.
    14. Vernay, Christophe & Blanc, Philippe & Pitaval, Sébastien, 2013. "Characterizing measurements campaigns for an innovative calibration approach of the global horizontal irradiation estimated by HelioClim-3," Renewable Energy, Elsevier, vol. 57(C), pages 339-347.
    15. Jacovides, C.P. & Kaskaoutis, D.G. & Tymvios, F.S. & Asimakopoulos, D.N., 2004. "Application of SPCTRAL2 parametric model in estimating spectral solar irradiances over polluted Athens atmosphere," Renewable Energy, Elsevier, vol. 29(7), pages 1109-1119.
    16. Kambezidis, H.D. & Psiloglou, B.E. & Synodinou, B.M., 1997. "Comparison between measurements and models for daily solar irradiation on tilted surfaces in Athens, Greece," Renewable Energy, Elsevier, vol. 10(4), pages 505-518.
    17. Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
    18. Janjai, S. & Praditwong, P. & Moonin, C., 1996. "A new model for computing monthly average daily diffuse radiation for Bangkok," Renewable Energy, Elsevier, vol. 9(1), pages 1283-1286.
    19. Xu, Xiaojun & Du, Huaqiang & Zhou, Guomo & Mao, Fangjie & Li, Pingheng & Fan, Weiliang & Zhu, Dien, 2016. "A method for daily global solar radiation estimation from two instantaneous values using MODIS atmospheric products," Energy, Elsevier, vol. 111(C), pages 117-125.
    20. Yacef, R. & Benghanem, M. & Mellit, A., 2012. "Prediction of daily global solar irradiation data using Bayesian neural network: A comparative study," Renewable Energy, Elsevier, vol. 48(C), pages 146-154.
    21. Kaskaoutis, D.G. & Kambezidis, H.D., 2008. "The role of aerosol models of the SMARTS code in predicting the spectral direct-beam irradiance in an urban area," Renewable Energy, Elsevier, vol. 33(7), pages 1532-1543.
    22. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Salazar, Germán Ariel & Zhu, Zhongmin & Gong, Wei, 2016. "Solar radiation prediction using different techniques: model evaluation and comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 384-397.
    23. Pérez-Higueras, P.J. & Rodrigo, P. & Fernández, E.F. & Almonacid, F. & Hontoria, L., 2012. "A simplified method for estimating direct normal solar irradiation from global horizontal irradiation useful for CPV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5529-5534.
    24. Polo, J. & Antonanzas-Torres, F. & Vindel, J.M. & Ramirez, L., 2014. "Sensitivity of satellite-based methods for deriving solar radiation to different choice of aerosol input and models," Renewable Energy, Elsevier, vol. 68(C), pages 785-792.
    25. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    26. Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C.G., 2008. "Prediction of daily global solar irradiance on horizontal surfaces based on neural-network techniques," Renewable Energy, Elsevier, vol. 33(8), pages 1796-1803.
    27. Li, Huashan & Ma, Weibin & Lian, Yongwang & Wang, Xianlong & Zhao, Liang, 2011. "Global solar radiation estimation with sunshine duration in Tibet, China," Renewable Energy, Elsevier, vol. 36(11), pages 3141-3145.
    28. Polo, J. & Martín, L. & Vindel, J.M., 2015. "Correcting satellite derived DNI with systematic and seasonal deviations: Application to India," Renewable Energy, Elsevier, vol. 80(C), pages 238-243.
    29. Boilley, Alexandre & Wald, Lucien, 2015. "Comparison between meteorological re-analyses from ERA-Interim and MERRA and measurements of daily solar irradiation at surface," Renewable Energy, Elsevier, vol. 75(C), pages 135-143.
    30. Torres, J.L. & De Blas, M. & García, A. & de Francisco, A., 2010. "Comparative study of various models in estimating hourly diffuse solar irradiance," Renewable Energy, Elsevier, vol. 35(6), pages 1325-1332.
    31. Batlles, F.J. & Rubio, M.A. & Tovar, J. & Olmo, F.J. & Alados-Arboledas, L., 2000. "Empirical modeling of hourly direct irradiance by means of hourly global irradiance," Energy, Elsevier, vol. 25(7), pages 675-688.
    32. Gueymard, Christian A., 2005. "Interdisciplinary applications of a versatile spectral solar irradiance model: A review," Energy, Elsevier, vol. 30(9), pages 1551-1576.
    33. Bahel, V. & Bakhsh, H. & Srinivasan, R., 1987. "A correlation for estimation of global solar radiation," Energy, Elsevier, vol. 12(2), pages 131-135.
    34. Kosmopoulos, P.G. & Kazadzis, S. & Lagouvardos, K. & Kotroni, V. & Bais, A., 2015. "Solar energy prediction and verification using operational model forecasts and ground-based solar measurements," Energy, Elsevier, vol. 93(P2), pages 1918-1930.
    35. Akarslan, Emre & Hocaoglu, Fatih Onur, 2016. "A novel adaptive approach for hourly solar radiation forecasting," Renewable Energy, Elsevier, vol. 87(P1), pages 628-633.
    36. Kaplanis, S. & Kaplani, E., 2007. "A model to predict expected mean and stochastic hourly global solar radiation I(h;nj) values," Renewable Energy, Elsevier, vol. 32(8), pages 1414-1425.
    37. Hu, Eric & Yang, YongPing & Nishimura, Akira & Yilmaz, Ferdi & Kouzani, Abbas, 2010. "Solar thermal aided power generation," Applied Energy, Elsevier, vol. 87(9), pages 2881-2885, September.
    38. Lina M. Mercado & Nicolas Bellouin & Stephen Sitch & Olivier Boucher & Chris Huntingford & Martin Wild & Peter M. Cox, 2009. "Impact of changes in diffuse radiation on the global land carbon sink," Nature, Nature, vol. 458(7241), pages 1014-1017, April.
    39. López, Gabriel & Rubio, Miguel Angel & Batlles, Francisco J., 2000. "Estimation of hourly direct normal from measured global solar irradiance in Spain," Renewable Energy, Elsevier, vol. 21(2), pages 175-186.
    40. Chen, Rensheng & Kang, Ersi & Ji, Xibin & Yang, Jianping & Wang, Junhai, 2007. "An hourly solar radiation model under actual weather and terrain conditions: A case study in Heihe river basin," Energy, Elsevier, vol. 32(7), pages 1148-1157.
    41. Li, Huashan & Ma, Weibin & Lian, Yongwang & Wang, Xianlong, 2010. "Estimating daily global solar radiation by day of year in China," Applied Energy, Elsevier, vol. 87(10), pages 3011-3017, October.
    42. Benghanem, Mohamed & Mellit, Adel, 2010. "Radial Basis Function Network-based prediction of global solar radiation data: Application for sizing of a stand-alone photovoltaic system at Al-Madinah, Saudi Arabia," Energy, Elsevier, vol. 35(9), pages 3751-3762.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    2. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Ma, Xin & Bai, Hua, 2019. "Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 168-186.
    3. Wang, Hong & Sun, Fubao & Wang, Tingting & Liu, Wenbin, 2018. "Estimation of daily and monthly diffuse radiation from measurements of global solar radiation a case study across China," Renewable Energy, Elsevier, vol. 126(C), pages 226-241.
    4. Kaba, Kazım & Sarıgül, Mehmet & Avcı, Mutlu & Kandırmaz, H. Mustafa, 2018. "Estimation of daily global solar radiation using deep learning model," Energy, Elsevier, vol. 162(C), pages 126-135.
    5. Torres, José Luis & García, Ignacio, 2021. "Analytical expressions for estimating sky diffuse irradiance and illuminance on tilted planes for the CIE Standard General Skies," Renewable Energy, Elsevier, vol. 174(C), pages 320-335.
    6. Tan, Yunhui & Wang, Quan & Zhang, Zhaoyang, 2023. "Near-real-time estimation of global horizontal irradiance from Himawari-8 satellite data," Renewable Energy, Elsevier, vol. 215(C).
    7. Su, Gang & Zhang, Shuangyang & Hu, Mengru & Yao, Wanxiang & Li, Ziwei & Xi, Yue, 2022. "The modified layer-by-layer weakening solar radiation models based on relative humidity and air quality index," Energy, Elsevier, vol. 239(PE).
    8. Feiyan Chen & Zhigao Zhou & Aiwen Lin & Jiqiang Niu & Wenmin Qin & Zhong Yang, 2019. "Evaluation of Direct Horizontal Irradiance in China Using a Physically-Based Model and Machine Learning Methods," Energies, MDPI, vol. 12(1), pages 1-19, January.
    9. Royo, Alberto & García, Ignacio & Torres, José Luis, 2018. "Generation of the site-adapted clearest-sky year of direct normal irradiance for solar concentrating technologies," Renewable Energy, Elsevier, vol. 128(PA), pages 250-264.
    10. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    11. Ruiz-Arias, José A., 2021. "Aerosol transmittance for clear-sky solar irradiance models: Review and validation of an accurate universal parameterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Feng, Lan & Lin, Aiwen & Wang, Lunche & Qin, Wenmin & Gong, Wei, 2018. "Evaluation of sunshine-based models for predicting diffuse solar radiation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 168-182.
    13. Sun, Xixi & Bright, Jamie M. & Gueymard, Christian A. & Acord, Brendan & Wang, Peng & Engerer, Nicholas A., 2019. "Worldwide performance assessment of 75 global clear-sky irradiance models using Principal Component Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 550-570.
    14. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.
    15. Wang, Lunche & Lu, Yunbo & Zou, Ling & Feng, Lan & Wei, Jing & Qin, Wenmin & Niu, Zigeng, 2019. "Prediction of diffuse solar radiation based on multiple variables in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 151-216.
    16. Chang, Kai & Zhang, Qingyuan, 2019. "Improvement of the hourly global solar model and solar radiation for air-conditioning design in China," Renewable Energy, Elsevier, vol. 138(C), pages 1232-1238.
    17. Jiaojiao Feng & Weizhen Wang & Jing Li, 2018. "An LM-BP Neural Network Approach to Estimate Monthly-Mean Daily Global Solar Radiation Using MODIS Atmospheric Products," Energies, MDPI, vol. 11(12), pages 1-14, December.
    18. Sun, Xixi & Bright, Jamie M. & Gueymard, Christian A. & Bai, Xinyu & Acord, Brendan & Wang, Peng, 2021. "Worldwide performance assessment of 95 direct and diffuse clear-sky irradiance models using principal component analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Tingting Zhu & Yiren Guo & Cong Wang & Chao Ni, 2020. "Inter-Hour Forecast of Solar Radiation Based on the Structural Equation Model and Ensemble Model," Energies, MDPI, vol. 13(17), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    2. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Salazar, Germán Ariel & Zhu, Zhongmin & Gong, Wei, 2016. "Solar radiation prediction using different techniques: model evaluation and comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 384-397.
    3. Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
    4. Rohani, Abbas & Taki, Morteza & Abdollahpour, Masoumeh, 2018. "A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I)," Renewable Energy, Elsevier, vol. 115(C), pages 411-422.
    5. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    6. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2016. "Recent improvements of the Meteorological Radiation Model for solar irradiance estimates under all-sky conditions," Renewable Energy, Elsevier, vol. 93(C), pages 142-158.
    7. Bayrakçı, Hilmi Cenk & Demircan, Cihan & Keçebaş, Ali, 2018. "The development of empirical models for estimating global solar radiation on horizontal surface: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2771-2782.
    8. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2015. "Review and statistical analysis of different global solar radiation sunshine models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1869-1880.
    9. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    10. Chen, Ji-Long & He, Lei & Yang, Hong & Ma, Maohua & Chen, Qiao & Wu, Sheng-Jun & Xiao, Zuo-lin, 2019. "Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 91-111.
    11. Prieto, Jesús-Ignacio & García, David, 2022. "Global solar radiation models: A critical review from the point of view of homogeneity and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Cao, Fei & Li, Huashan & Yang, Tian & Li, Yan & Zhu, Tianyu & Zhao, Liang, 2017. "Evaluation of diffuse solar radiation models in Northern China: New model establishment and radiation sources comparison," Renewable Energy, Elsevier, vol. 103(C), pages 708-720.
    13. Mecibah, Mohamed Salah & Boukelia, Taqiy Eddine & Tahtah, Reda & Gairaa, Kacem, 2014. "Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 194-202.
    14. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    15. Qin, Wenmin & Wang, Lunche & Lin, Aiwen & Zhang, Ming & Xia, Xiangao & Hu, Bo & Niu, Zigeng, 2018. "Comparison of deterministic and data-driven models for solar radiation estimation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 579-594.
    16. Keshtegar, Behrooz & Mert, Cihan & Kisi, Ozgur, 2018. "Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 330-341.
    17. Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.
    18. Fan, Junliang & Chen, Baiquan & Wu, Lifeng & Zhang, Fucang & Lu, Xianghui & Xiang, Youzhen, 2018. "Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions," Energy, Elsevier, vol. 144(C), pages 903-914.
    19. Zhou, Zhigao & Wang, Lunche & Lin, Aiwen & Zhang, Ming & Niu, Zigeng, 2018. "Innovative trend analysis of solar radiation in China during 1962–2015," Renewable Energy, Elsevier, vol. 119(C), pages 675-689.
    20. Samuel Chukwujindu, Nwokolo, 2017. "A comprehensive review of empirical models for estimating global solar radiation in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 955-995.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:616-637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.