IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i8p6285-6294.html
   My bibliography  Save this article

Issues concerning atmospheric turbidity indices

Author

Listed:
  • Eltbaakh, Yousef A.
  • Ruslan, M.H.
  • Alghoul, M.A.
  • Othman, M.Y.
  • Sopian, K.

Abstract

Knowledge of atmospheric turbidity coefficients is very important in meteorology, climatology, atmospheric pollution monitoring, and in the prediction of solar energy availability under cloudless skies. This paper provides a thorough review on a number of atmospheric turbidity indices and on the several methods that have been developed in the past few decades. The Lambert–Bouguer–Beer law is the basic relationship underlying the derivation of various turbidity indices. Turbidity can be referred to as monochromatic (narrow band) wavelengths, broadband wavelengths, and the total spectrum. Narrow band turbidity is measured using sun photometers, while the other two turbidities are measured using pyrheliometers with broadband pass filters. The Ångström's turbidity coefficients and the Linke's turbidity factor are among the most frequently used atmospheric turbidity coefficients.

Suggested Citation

  • Eltbaakh, Yousef A. & Ruslan, M.H. & Alghoul, M.A. & Othman, M.Y. & Sopian, K., 2012. "Issues concerning atmospheric turbidity indices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6285-6294.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:8:p:6285-6294
    DOI: 10.1016/j.rser.2012.05.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112003681
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.05.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cucumo, M & Kaliakatsos, D & Marinelli, V, 2000. "A calculation method for the estimation of the Linke turbidity factor," Renewable Energy, Elsevier, vol. 19(1), pages 249-258.
    2. Psiloglou, B.E. & Santamouris, M. & Asimakopoulos, D.N., 1997. "Predicting the spectral and broadband aerosol transmittance in the atmosphere for solar radiation modelling," Renewable Energy, Elsevier, vol. 12(3), pages 259-279.
    3. Chaâbane, M. & Masmoudi, M. & Medhioub, K., 2004. "Determination of Linke turbidity factor from solar radiation measurement in northern Tunisia," Renewable Energy, Elsevier, vol. 29(13), pages 2065-2076.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    2. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2016. "Recent improvements of the Meteorological Radiation Model for solar irradiance estimates under all-sky conditions," Renewable Energy, Elsevier, vol. 93(C), pages 142-158.
    3. Gutiérrez-Trashorras, Antonio J. & Villicaña-Ortiz, Eunice & Álvarez-Álvarez, Eduardo & González-Caballín, Juan M. & Xiberta-Bernat, Jorge & Suarez-López, María J., 2018. "Attenuation processes of solar radiation. Application to the quantification of direct and diffuse solar irradiances on horizontal surfaces in Mexico by means of an overall atmospheric transmittance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 93-106.
    4. Aitor Marzo & Jesús Ballestrín & Joaquín Alonso-Montesinos & Pablo Ferrada & Jesús Polo & Gabriel López & Javier Barbero, 2021. "Field Quality Control of Spectral Solar Irradiance Measurements by Comparison with Broadband Measurements," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    5. Garniwa, Pranda M.P. & Lee, Hyunjin, 2023. "Intercomparison of the parameterized Linke turbidity factor in deriving global horizontal irradiance," Renewable Energy, Elsevier, vol. 212(C), pages 285-298.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eltbaakh, Yousef A. & Ruslan, M.H. & Alghoul, M.A. & Othman, M.Y. & Sopian, K. & Razykov, T.M., 2012. "Solar attenuation by aerosols: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4264-4276.
    2. Garniwa, Pranda M.P. & Lee, Hyunjin, 2023. "Intercomparison of the parameterized Linke turbidity factor in deriving global horizontal irradiance," Renewable Energy, Elsevier, vol. 212(C), pages 285-298.
    3. Chen, Shanlin & Li, Mengying, 2022. "Improved turbidity estimation from local meteorological data for solar resourcing and forecasting applications," Renewable Energy, Elsevier, vol. 189(C), pages 259-272.
    4. Dos Santos, Cícero Manoel & De Souza, José Leonaldo & Ferreira Junior, Ricardo Araujo & Tiba, Chigueru & de Melo, Rinaldo Oliveira & Lyra, Gustavo Bastos & Teodoro, Iêdo & Lyra, Guilherme Bastos & Lem, 2014. "On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil," Energy, Elsevier, vol. 71(C), pages 388-398.
    5. Ruiz-Arias, José A., 2022. "Spectral integration of clear-sky atmospheric transmittance: Review and worldwide performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Khalil, Samy A. & Shaffie, A.M., 2016. "Attenuation of the solar energy by aerosol particles: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 363-375.
    7. Nunez Munoz, Maria & Ballantyne, Erica E.F. & Stone, David A., 2022. "Development and evaluation of empirical models for the estimation of hourly horizontal diffuse solar irradiance in the United Kingdom," Energy, Elsevier, vol. 241(C).
    8. Muñoz, J. & Perpiñán, O., 2016. "A simple model for the prediction of yearly energy yields for grid-connected PV systems starting from monthly meteorological data," Renewable Energy, Elsevier, vol. 97(C), pages 680-688.
    9. Nourhane Merabet & Lina Chouichi & Kaouther Kerboua, 2022. "Numerical design and simulation of a thermodynamic solar solution for a pilot residential building at the edge of the sun-belt region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12582-12608, November.
    10. Gutiérrez-Trashorras, Antonio J. & Villicaña-Ortiz, Eunice & Álvarez-Álvarez, Eduardo & González-Caballín, Juan M. & Xiberta-Bernat, Jorge & Suarez-López, María J., 2018. "Attenuation processes of solar radiation. Application to the quantification of direct and diffuse solar irradiances on horizontal surfaces in Mexico by means of an overall atmospheric transmittance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 93-106.
    11. Chen, Shanlin & Liang, Zhaojian & Dong, Peixin & Guo, Su & Li, Mengying, 2023. "A transferable turbidity estimation method for estimating clear-sky solar irradiance," Renewable Energy, Elsevier, vol. 206(C), pages 635-644.
    12. Ellouz, F. & Masmoudi, M. & Medhioub, K., 2013. "Study of the atmospheric turbidity over Northern Tunisia," Renewable Energy, Elsevier, vol. 51(C), pages 513-517.
    13. Li, Danny H.W & Lam, Joseph C, 2002. "A study of atmospheric turbidity for Hong Kong," Renewable Energy, Elsevier, vol. 25(1), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:8:p:6285-6294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.