IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v33y2005i3p289-296.html
   My bibliography  Save this article

Environmental impacts from the solar energy technologies

Author

Listed:
  • Tsoutsos, Theocharis
  • Frantzeskaki, Niki
  • Gekas, Vassilis

Abstract

No abstract is available for this item.

Suggested Citation

  • Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
  • Handle: RePEc:eee:enepol:v:33:y:2005:i:3:p:289-296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(03)00241-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norton, Brian & Eames, Phillip C & Lo, Steve NG, 1998. "Full-energy-chain analysis of greenhouse gas emissions for solar thermal electric power generation systems," Renewable Energy, Elsevier, vol. 15(1), pages 131-136.
    2. Fthenakis, Vasilis M., 2000. "End-of-life management and recycling of PV modules," Energy Policy, Elsevier, vol. 28(14), pages 1051-1058, November.
    3. Tsoutsos, Theocharis & Gekas, Vasilis & Marketaki, Katerina, 2003. "Technical and economical evaluation of solar thermal power generation," Renewable Energy, Elsevier, vol. 28(6), pages 873-886.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Said, Zafar & Arora, Sahil & Bellos, Evangelos, 2018. "A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 302-316.
    2. Karabulut, Halit & Yücesu, Hüseyin Serdar & ÇInar, Can & Aksoy, Fatih, 2009. "An experimental study on the development of a [beta]-type Stirling engine for low and moderate temperature heat sources," Applied Energy, Elsevier, vol. 86(1), pages 68-73, January.
    3. Kang, Sukmin & Yoo, Sungyeol & Lee, Jina & Boo, Bonghyun & Ryu, Hojin, 2012. "Experimental investigations for recycling of silicon and glass from waste photovoltaic modules," Renewable Energy, Elsevier, vol. 47(C), pages 152-159.
    4. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    5. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    6. Roma, Antonio & Pirino, Davide, 2009. "The extraction of natural resources: The role of thermodynamic efficiency," Ecological Economics, Elsevier, vol. 68(10), pages 2594-2606, August.
    7. Domínguez, Adriana & Geyer, Roland, 2019. "Photovoltaic waste assessment of major photovoltaic installations in the United States of America," Renewable Energy, Elsevier, vol. 133(C), pages 1188-1200.
    8. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    9. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Opportunities and Challenges of Solar and Wind Energy in South Korea: A Review," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    10. Michael Redlinger & Roderick Eggert & Michael Woodhouse, 2014. "Evaluating the Availability of Gallium, Indium, and Tellurium from Recycled Photovoltaic Modules," Working Papers 2014-09, Colorado School of Mines, Division of Economics and Business.
    11. Aotian Song & Lin Lu & Zhizhao Liu & Man Sing Wong, 2016. "A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong," Sustainability, MDPI, vol. 8(8), pages 1-21, August.
    12. Kaygusuz, Kamil, 2011. "Prospect of concentrating solar power in Turkey: The sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 808-814, January.
    13. Raghava Kommalapati & Akhil Kadiyala & Md. Tarkik Shahriar & Ziaul Huque, 2017. "Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems," Energies, MDPI, vol. 10(3), pages 1-18, March.
    14. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan—Solar energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2762-2780.
    15. Tsoutsos, Theocharis & Gekas, Vasilis & Marketaki, Katerina, 2003. "Technical and economical evaluation of solar thermal power generation," Renewable Energy, Elsevier, vol. 28(6), pages 873-886.
    16. Maciej Chrzanowski & Piotr Zawada, 2023. "Fraction Separation Potential in the Recycling Process of Photovoltaic Panels at the Installation Site—A Conceptual Framework from an Economic and Ecological Safety Perspective," Energies, MDPI, vol. 16(5), pages 1-10, February.
    17. Sinha, Parikhit & Kriegner, Christopher J. & Schew, William A. & Kaczmar, Swiatoslav W. & Traister, Matthew & Wilson, David J., 2008. "Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle," Energy Policy, Elsevier, vol. 36(1), pages 381-387, January.
    18. Graham, Philip & Fadlallah, Sulaiman O. & Boulbrachene, Khaled, 2024. "Wind incidence and pedestal height effect on the flow behaviour and aerodynamic loading on a stand-alone solar parabolic dish," Renewable Energy, Elsevier, vol. 227(C).
    19. Denise Matos & João Gabriel Lassio & David Castelo Branco & Amaro Olímpio Pereira Júnior, 2022. "Perspectives for Expansion of Concentrating Solar Power (CSP) Generation Technologies in Brazil," Energies, MDPI, vol. 15(24), pages 1-16, December.
    20. Nassar, Nedal T. & Wilburn, David R. & Goonan, Thomas G., 2016. "Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios," Applied Energy, Elsevier, vol. 183(C), pages 1209-1226.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:33:y:2005:i:3:p:289-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.