IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp785-792.html
   My bibliography  Save this article

Sensitivity of satellite-based methods for deriving solar radiation to different choice of aerosol input and models

Author

Listed:
  • Polo, J.
  • Antonanzas-Torres, F.
  • Vindel, J.M.
  • Ramirez, L.

Abstract

This paper presents a sensitivity analysis of satellite-based methods for deriving solar irradiance components for analyzing the impact of the external inputs that are normally associated to the satellite model. Different sensitivity calculations have been performed using as reference site the PSA (Solar Platform of Almeria) station placed at the south-east of Spain. Thus, the sensitivity to the aerosol information input has been addressed by comparing the estimations using aerosol input from AERONET data with those using aerosol dataset such as MODIS or MISR (based on satellite) and MACC (based on reanalysis). Sensitivity to the clear sky model choice has been also studied by using three different models, from the simpler ESRA model (in terms of input parameters) to the most sophisticated REST2. Finally, three global to direct conversion models (Louche, DirInt and DirIndex) have been included to explore the sensitivity of the direct normal irradiance estimations. The sensitivity analysis has shown the interrelations between the different cases according to the uncertainty of the input information used. The results have been analyzed for clear and non-clear sky conditions separately and for the DNI irradiance range of 400–900 W m−2 as a case of special interest for the concentrating solar power applications. The work presented here has as novelty the analysis of the propagation of uncertainty of individual models and atmospheric datasets in the framework of a satellite-based model for solar irradiance computation and their relative weights to the final performance of the model. An underestimation of AOD by 50% causes an error in the global horizontal irradiance calculated by a clear sky model of 3–5% depending on the model used, and slightly less for an overestimation of AOD. For DNI the error ranges are 12–15% and 9–12% for 50% underestimation and overestimation of AOD respectively.

Suggested Citation

  • Polo, J. & Antonanzas-Torres, F. & Vindel, J.M. & Ramirez, L., 2014. "Sensitivity of satellite-based methods for deriving solar radiation to different choice of aerosol input and models," Renewable Energy, Elsevier, vol. 68(C), pages 785-792.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:785-792
    DOI: 10.1016/j.renene.2014.03.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114001670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.03.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gueymard, Christian A., 2005. "Importance of atmospheric turbidity and associated uncertainties in solar radiation and luminous efficacy modelling," Energy, Elsevier, vol. 30(9), pages 1603-1621.
    2. Batlles, F.J. & Rubio, M.A. & Tovar, J. & Olmo, F.J. & Alados-Arboledas, L., 2000. "Empirical modeling of hourly direct irradiance by means of hourly global irradiance," Energy, Elsevier, vol. 25(7), pages 675-688.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gueymard, Christian A. & Bright, Jamie M. & Lingfors, David & Habte, Aron & Sengupta, Manajit, 2019. "A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 412-427.
    2. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    3. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    4. Linares-Rodriguez, Alvaro & Quesada-Ruiz, Samuel & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2015. "An evolutionary artificial neural network ensemble model for estimating hourly direct normal irradiances from meteosat imagery," Energy, Elsevier, vol. 91(C), pages 264-273.
    5. Polo, J. & Martín, L. & Vindel, J.M., 2015. "Correcting satellite derived DNI with systematic and seasonal deviations: Application to India," Renewable Energy, Elsevier, vol. 80(C), pages 238-243.
    6. Antonanzas-Torres, F. & Urraca, R. & Polo, J. & Perpiñán-Lamigueiro, O. & Escobar, R., 2019. "Clear sky solar irradiance models: A review of seventy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 374-387.
    7. Alonso-Suárez, R. & David, M. & Branco, V. & Lauret, P., 2020. "Intra-day solar probabilistic forecasts including local short-term variability and satellite information," Renewable Energy, Elsevier, vol. 158(C), pages 554-573.
    8. Polo, J. & Téllez, F.M. & Tapia, C., 2016. "Comparative analysis of long-term solar resource and CSP production for bankability," Renewable Energy, Elsevier, vol. 90(C), pages 38-45.
    9. Polo, J. & Gastón, M. & Vindel, J.M. & Pagola, I., 2015. "Spatial variability and clustering of global solar irradiation in Vietnam from sunshine duration measurements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1326-1334.
    10. Cheng, Xinghong & Ye, Dong & Shen, Yanbo & Li, Deping & Feng, Jinming, 2022. "Studies on the improvement of modelled solar radiation and the attenuation effect of aerosol using the WRF-Solar model with satellite-based AOD data over north China," Renewable Energy, Elsevier, vol. 196(C), pages 358-365.
    11. Cornejo, Lorena & Martín-Pomares, Luis & Alarcon, Diego & Blanco, Julián & Polo, Jesús, 2017. "A through analysis of solar irradiation measurements in the region of Arica Parinacota, Chile," Renewable Energy, Elsevier, vol. 112(C), pages 197-208.
    12. Diane Palmer & Richard Blanchard, 2021. "Evaluation of High-Resolution Satellite-Derived Solar Radiation Data for PV Performance Simulation in East Africa," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    13. Alonso-Montesinos, J. & Batlles, F.J., 2015. "The use of a sky camera for solar radiation estimation based on digital image processing," Energy, Elsevier, vol. 90(P1), pages 377-386.
    14. Martín-Pomares, Luis & Martínez, Diego & Polo, Jesús & Perez-Astudillo, Daniel & Bachour, Dunia & Sanfilippo, Antonio, 2017. "Analysis of the long-term solar potential for electricity generation in Qatar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1231-1246.
    15. Mazorra Aguiar, L. & Polo, J. & Vindel, J.M. & Oliver, A., 2019. "Analysis of satellite derived solar irradiance in islands with site adaptation techniques for improving the uncertainty," Renewable Energy, Elsevier, vol. 135(C), pages 98-107.
    16. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Salazar, Germán Ariel & Zhu, Zhongmin & Gong, Wei, 2016. "Solar radiation prediction using different techniques: model evaluation and comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 384-397.
    17. Armando Castillejo-Cuberos & John Boland & Rodrigo Escobar, 2021. "Short-Term Deterministic Solar Irradiance Forecasting Considering a Heuristics-Based, Operational Approach," Energies, MDPI, vol. 14(18), pages 1-24, September.
    18. Antonanzas-Torres, F. & Sanz-Garcia, A. & Martínez-de-Pisón, F.J. & Antonanzas, J. & Perpiñán-Lamigueiro, O. & Polo, J., 2014. "Towards downscaling of aerosol gridded dataset for improving solar resource assessment, an application to Spain," Renewable Energy, Elsevier, vol. 71(C), pages 534-544.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Xixi & Bright, Jamie M. & Gueymard, Christian A. & Bai, Xinyu & Acord, Brendan & Wang, Peng, 2021. "Worldwide performance assessment of 95 direct and diffuse clear-sky irradiance models using principal component analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Alonso, J. & Batlles, F.J., 2014. "Short and medium-term cloudiness forecasting using remote sensing techniques and sky camera imagery," Energy, Elsevier, vol. 73(C), pages 890-897.
    3. Hocaoglu, Fatih Onur & Serttas, Fatih, 2017. "A novel hybrid (Mycielski-Markov) model for hourly solar radiation forecasting," Renewable Energy, Elsevier, vol. 108(C), pages 635-643.
    4. Wang, Lunche & Salazar, Germán Ariel & Gong, Wei & Peng, Simao & Zou, Ling & Lin, Aiwen, 2015. "An improved method for estimating the Ångström turbidity coefficient β in Central China during 1961–2010," Energy, Elsevier, vol. 81(C), pages 67-73.
    5. Kristijan Brecl & Marko Topič, 2018. "Photovoltaics (PV) System Energy Forecast on the Basis of the Local Weather Forecast: Problems, Uncertainties and Solutions," Energies, MDPI, vol. 11(5), pages 1-12, May.
    6. Jangwon Suh & Yosoon Choi, 2017. "Methods for Converting Monthly Total Irradiance Data into Hourly Data to Estimate Electric Power Production from Photovoltaic Systems: A Comparative Study," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    7. Escrig, H. & Batlles, F.J. & Alonso, J. & Baena, F.M. & Bosch, J.L. & Salbidegoitia, I.B. & Burgaleta, J.I., 2013. "Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast," Energy, Elsevier, vol. 55(C), pages 853-859.
    8. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    9. Rivero, M. & Orozco, S. & Sellschopp, F.S. & Loera-Palomo, R., 2017. "A new methodology to extend the validity of the Hargreaves-Samani model to estimate global solar radiation in different climates: Case study Mexico," Renewable Energy, Elsevier, vol. 114(PB), pages 1340-1352.
    10. El Mghouchi, Y. & El Bouardi, A. & Choulli, Z. & Ajzoul, T., 2016. "Models for obtaining the daily direct, diffuse and global solar radiations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 87-99.
    11. Cucumo, M. & De Rosa, A. & Ferraro, V. & Kaliakatsos, D. & Marinelli, V., 2008. "Correlations of global and diffuse solar luminous efficacy for all sky conditions and comparisons with experimental data of five localities," Renewable Energy, Elsevier, vol. 33(9), pages 2036-2047.
    12. Rouhollahi, Mina & Whaley, David & Behrend, Monica & Byrne, Josh & Boland, John, 2022. "The role of residential tree arrangement: A scoping review of energy efficiency in temperate to subtropical climate zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Carra, Elena & Marzo, Aitor & Ballestrín, Jesús & Polo, Jesús & Barbero, Javier & Alonso-Montesinos, Joaquín & Monterreal, Rafael & Abreu, Edgar F.M. & Fernández-Reche, Jesús, 2020. "Atmospheric extinction levels of solar radiation using aerosol optical thickness satellite data. Validation methodology with measurement system," Renewable Energy, Elsevier, vol. 149(C), pages 1120-1132.
    14. Marques Filho, Edson P. & Oliveira, Amauri P. & Vita, Willian A. & Mesquita, Francisco L.L. & Codato, Georgia & Escobedo, João F. & Cassol, Mariana & França, José Ricardo A., 2016. "Global, diffuse and direct solar radiation at the surface in the city of Rio de Janeiro: Observational characterization and empirical modeling," Renewable Energy, Elsevier, vol. 91(C), pages 64-74.
    15. Alonso, J. & Batlles, F.J. & López, G. & Ternero, A., 2014. "Sky camera imagery processing based on a sky classification using radiometric data," Energy, Elsevier, vol. 68(C), pages 599-608.
    16. Carra, Elena & Ballestrín, Jesús & Polo, Jesús & Barbero, Javier & Fernández-Reche, Jesús, 2018. "Atmospheric extinction levels of solar radiation at Plataforma Solar de Almería. Application to solar thermal electric plants," Energy, Elsevier, vol. 145(C), pages 400-407.
    17. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    18. Liu, Jiandong & Linderholm, Hans & Chen, Deliang & Zhou, Xiuji & Flerchinger, Gerald N. & Yu, Qiang & Du, Jun & Wu, Dingrong & Shen, Yanbo & Yang, Zhenbin, 2015. "Changes in the relationship between solar radiation and sunshine duration in large cities of China," Energy, Elsevier, vol. 82(C), pages 589-600.
    19. Nikitidou, E. & Kazantzidis, A. & Salamalikis, V., 2014. "The aerosol effect on direct normal irradiance in Europe under clear skies," Renewable Energy, Elsevier, vol. 68(C), pages 475-484.
    20. El Mghouchi, Y. & Ajzoul, T. & Taoukil, D. & El Bouardi, A., 2016. "The most suitable prediction model of the solar intensity, on horizontal plane, at various weather conditions in a specified location in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 84-98.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:785-792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.