IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i8p1796-1803.html
   My bibliography  Save this article

Prediction of daily global solar irradiance on horizontal surfaces based on neural-network techniques

Author

Listed:
  • Zervas, P.L.
  • Sarimveis, H.
  • Palyvos, J.A.
  • Markatos, N.C.G.

Abstract

In this study, a prediction model of global solar irradiance distribution on horizontal surfaces has been developed. The methodology is based on neural-network techniques and has been applied to the meteorological database of NTUA, Zografou Campus, Athens (37°58′26″N, 23°47′16″E). The investigation of the correlation between weather conditions, duration of daylight and the representative peak value of a Gaussian-type function plays an essential role in the development of the model. The weather conditions are categorized into six different states, whereas the daylight duration is obtained by familiar equations. Thereafter, a correction methodology for the Gaussian-type function—which stands for all six different states—is applied. Finally, the reliability of the developed model is investigated through a suitable validation procedure.

Suggested Citation

  • Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C.G., 2008. "Prediction of daily global solar irradiance on horizontal surfaces based on neural-network techniques," Renewable Energy, Elsevier, vol. 33(8), pages 1796-1803.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:8:p:1796-1803
    DOI: 10.1016/j.renene.2007.09.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107002923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.09.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahgat, A.B.G & Helwa, N.H & Ahamd, G.E & El Shenawy, E.T, 2004. "Estimation of the maximum power and normal operating power of a photovoltaic module by neural networks," Renewable Energy, Elsevier, vol. 29(3), pages 443-457.
    2. Labed, S. & Lorenzo, E., 2004. "The impact of solar radiation variability and data discrepancies on the design of PV systems," Renewable Energy, Elsevier, vol. 29(7), pages 1007-1022.
    3. Nijegorodov, N. & Adedoyin, J.A. & Devan, K.R.S., 1997. "A new analytical-empirical model for the instantaneous diffuse radiation and experimental investigation of its validity," Renewable Energy, Elsevier, vol. 11(3), pages 341-350.
    4. Albizzati, Enrique D. & Rossetti, Germán H. & Alfano, Orlando M., 1997. "Measurements and predictions of solar radiation incident on horizontal surfaces at Santa Fe, Argentina (31° 39′S, 60° 43′W)," Renewable Energy, Elsevier, vol. 11(4), pages 469-478.
    5. Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2006. "An adaptive wavelet-network model for forecasting daily total solar-radiation," Applied Energy, Elsevier, vol. 83(7), pages 705-722, July.
    6. Festa, R. & Jain, S. & Ratto, C.F., 1992. "Stochastic modelling of daily global irradiation," Renewable Energy, Elsevier, vol. 2(1), pages 23-34.
    7. Wong, L. T. & Chow, W. K., 2001. "Solar radiation model," Applied Energy, Elsevier, vol. 69(3), pages 191-224, July.
    8. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    9. Baig, A. & Akhter, P. & Mufti, A., 1991. "A novel approach to estimate the clear day global radiation," Renewable Energy, Elsevier, vol. 1(1), pages 119-123.
    10. Kaplanis, S.N., 2006. "New methodologies to estimate the hourly global solar radiation; Comparisons with existing models," Renewable Energy, Elsevier, vol. 31(6), pages 781-790.
    11. Dorvlo, Atsu S. S. & Jervase, Joseph A. & Al-Lawati, Ali, 2002. "Solar radiation estimation using artificial neural networks," Applied Energy, Elsevier, vol. 71(4), pages 307-319, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    2. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    3. Chi-Ming Lai & Yao-Hong Wang, 2011. "Energy-Saving Potential of Building Envelope Designs in Residential Houses in Taiwan," Energies, MDPI, vol. 4(11), pages 1-16, November.
    4. Kaplanis, S. & Kaplani, E., 2010. "Stochastic prediction of hourly global solar radiation for Patra, Greece," Applied Energy, Elsevier, vol. 87(12), pages 3748-3758, December.
    5. Dusan Maga & Jaromir Hrad & Jiri Hajek & Akeel Othman, 2021. "Application of Minimum Energy Effect to Numerical Reconstruction of Insolation Curves," Energies, MDPI, vol. 14(17), pages 1-18, August.
    6. Fernandez-Jimenez, L. Alfredo & Muñoz-Jimenez, Andrés & Falces, Alberto & Mendoza-Villena, Montserrat & Garcia-Garrido, Eduardo & Lara-Santillan, Pedro M. & Zorzano-Alba, Enrique & Zorzano-Santamaria,, 2012. "Short-term power forecasting system for photovoltaic plants," Renewable Energy, Elsevier, vol. 44(C), pages 311-317.
    7. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    8. Linares-Rodríguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vázquez, David & Tovar-Pescador, Joaquín, 2011. "Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks," Energy, Elsevier, vol. 36(8), pages 5356-5365.
    9. Dahmani, Kahina & Notton, Gilles & Voyant, Cyril & Dizene, Rabah & Nivet, Marie Laure & Paoli, Christophe & Tamas, Wani, 2016. "Multilayer Perceptron approach for estimating 5-min and hourly horizontal global irradiation from exogenous meteorological data in locations without solar measurements," Renewable Energy, Elsevier, vol. 90(C), pages 267-282.
    10. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "Determination of the optimal tilt angle and orientation for solar photovoltaic arrays," Renewable Energy, Elsevier, vol. 35(11), pages 2468-2475.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kashyap, Yashwant & Bansal, Ankit & Sao, Anil K., 2015. "Solar radiation forecasting with multiple parameters neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 825-835.
    2. Long, Huan & Zhang, Zijun & Su, Yan, 2014. "Analysis of daily solar power prediction with data-driven approaches," Applied Energy, Elsevier, vol. 126(C), pages 29-37.
    3. Wang, Guochang & Su, Yan & Shu, Lianjie, 2016. "One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models," Renewable Energy, Elsevier, vol. 96(PA), pages 469-478.
    4. Kaplani, E. & Kaplanis, S. & Mondal, S., 2018. "A spatiotemporal universal model for the prediction of the global solar radiation based on Fourier series and the site altitude," Renewable Energy, Elsevier, vol. 126(C), pages 933-942.
    5. Almonacid, F. & Fernández, Eduardo F. & Rodrigo, P. & Pérez-Higueras, P.J. & Rus-Casas, C., 2013. "Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an Artificial Neural Network," Energy, Elsevier, vol. 53(C), pages 165-172.
    6. Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
    7. Voyant, Cyril & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure, 2012. "Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation," Energy, Elsevier, vol. 39(1), pages 341-355.
    8. Hwang, Jun Kwon & Yun, Geun Young & Lee, Sukho & Seo, Hyeongjoon & Santamouris, Mat, 2020. "Using deep learning approaches with variable selection process to predict the energy performance of a heating and cooling system," Renewable Energy, Elsevier, vol. 149(C), pages 1227-1245.
    9. Purohit, Ishan & Purohit, Pallav, 2015. "Inter-comparability of solar radiation databases in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 735-747.
    10. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    11. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    12. Trapero, Juan R., 2016. "Calculation of solar irradiation prediction intervals combining volatility and kernel density estimates," Energy, Elsevier, vol. 114(C), pages 266-274.
    13. Janjai, S. & Pankaew, P. & Laksanaboonsong, J., 2009. "A model for calculating hourly global solar radiation from satellite data in the tropics," Applied Energy, Elsevier, vol. 86(9), pages 1450-1457, September.
    14. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    15. Hanany Tolba & Nouha Dkhili & Julien Nou & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2020. "Multi-Horizon Forecasting of Global Horizontal Irradiance Using Online Gaussian Process Regression: A Kernel Study," Energies, MDPI, vol. 13(16), pages 1-23, August.
    16. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    17. Trapero, Juan R. & Kourentzes, Nikolaos & Martin, A., 2015. "Short-term solar irradiation forecasting based on Dynamic Harmonic Regression," Energy, Elsevier, vol. 84(C), pages 289-295.
    18. Janjai, S. & Sricharoen, K. & Pattarapanitchai, S., 2011. "Semi-empirical models for the estimation of clear sky solar global and direct normal irradiances in the tropics," Applied Energy, Elsevier, vol. 88(12), pages 4749-4755.
    19. Linares-Rodriguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2013. "An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images," Energy, Elsevier, vol. 61(C), pages 636-645.
    20. Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:8:p:1796-1803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.