IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v142y2019icp207-214.html
   My bibliography  Save this article

Pilot-scale production of biodiesel from waste cooking oil using kettle limescale as a heterogeneous catalyst

Author

Listed:
  • Aghel, Babak
  • Mohadesi, Majid
  • Ansari, Ahmadreza
  • Maleki, Mahmoud

Abstract

This study aimed to evaluate and optimize a pilot-scale microreactor to convert waste cooking oil (WCO) into biodiesel using kettle limescale. Box-Behnken design was used to determine the optimum conditions for producing biodiesel. Effects of main variables including reaction temperature, catalyst concentration, and alcohol/oil volume ratio were evaluated at a constant residence time of 10 min. Based on the results of analysis of variance, the quadratic regression model had the best coefficient of determination (R2=0.9930) and adjusted coefficient of determination (RAdj.2= 0.9804). After the optimization of temperature, catalyst concentration, and methanol/oil volume ratio, the residence time was optimized to achieve the maximum purity of the produced biodiesel. At a reaction temperature of 61.7 °C, catalysts concentration (oil based) of 8.87 wt %, methanol to oil volume ratio of 1.7:3, and a residence time of 15 min, we observed the optimal conditions for obtaining a maximum biodiesel purity of 93.41%.

Suggested Citation

  • Aghel, Babak & Mohadesi, Majid & Ansari, Ahmadreza & Maleki, Mahmoud, 2019. "Pilot-scale production of biodiesel from waste cooking oil using kettle limescale as a heterogeneous catalyst," Renewable Energy, Elsevier, vol. 142(C), pages 207-214.
  • Handle: RePEc:eee:renene:v:142:y:2019:i:c:p:207-214
    DOI: 10.1016/j.renene.2019.04.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119305841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Fengxian & Li, Yihuai & Yang, Dongya & Li, Xiaohua & Sun, Ping, 2011. "Biodiesel production from mixed soybean oil and rapeseed oil," Applied Energy, Elsevier, vol. 88(6), pages 2050-2055, June.
    2. Naderloo, Leila & Javadikia, Hossein & Mostafaei, Mostafa, 2017. "Modeling the energy ratio and productivity of biodiesel with different reactor dimensions and ultrasonic power using ANFIS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 56-64.
    3. Barontini, Federica & Simone, Marco & Triana, Federico & Mancini, Andrea & Ragaglini, Giorgio & Nicolella, Cristiano, 2015. "Pilot-scale biofuel production from sunflower crops in central Italy," Renewable Energy, Elsevier, vol. 83(C), pages 954-962.
    4. Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo & Ahmad Zauzi, Nur Syuhada, 2017. "Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO," Renewable Energy, Elsevier, vol. 114(PB), pages 437-447.
    5. Jaiyen, Siyada & Naree, Thikumporn & Ngamcharussrivichai, Chawalit, 2015. "Comparative study of natural dolomitic rock and waste mixed seashells as heterogeneous catalysts for the methanolysis of palm oil to biodiesel," Renewable Energy, Elsevier, vol. 74(C), pages 433-440.
    6. Harsha Hebbar, H.R. & Math, M.C. & Yatish, K.V., 2018. "Optimization and kinetic study of CaO nano-particles catalyzed biodiesel production from Bombax ceiba oil," Energy, Elsevier, vol. 143(C), pages 25-34.
    7. Hashemzadeh Gargari, M. & Sadrameli, S.M., 2018. "Investigating continuous biodiesel production from linseed oil in the presence of a Co-solvent and a heterogeneous based catalyst in a packed bed reactor," Energy, Elsevier, vol. 148(C), pages 888-895.
    8. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    9. Choedkiatsakul, I. & Ngaosuwan, K. & Assabumrungrat, S. & Mantegna, S. & Cravotto, G., 2015. "Biodiesel production in a novel continuous flow microwave reactor," Renewable Energy, Elsevier, vol. 83(C), pages 25-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, Shengli & Zhang, Xiangyu & Ning, Yilin & Zhang, Yujiao & Qu, Tongxin & Hu, Xun & Gong, Zhiqiang & Lu, Chunmei, 2020. "Dolomite incorporated with cerium to enhance the stability in catalyzing transesterification for biodiesel production," Renewable Energy, Elsevier, vol. 154(C), pages 107-116.
    2. Behdad Shadidi & Gholamhassan Najafi & Mohammad Ali Zolfigol, 2022. "A Review of the Existing Potentials in Biodiesel Production in Iran," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    3. R, Gopi & Thangarasu, Vinoth & Vinayakaselvi M, Angkayarkan & Ramanathan, Anand, 2022. "A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Zheng, Yuanzhou & Shadloo, Mostafa Safdari & Nasiri, Hossein & Maleki, Akbar & Karimipour, Arash & Tlili, Iskander, 2020. "Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations," Renewable Energy, Elsevier, vol. 153(C), pages 1296-1306.
    5. Siddharth Jain & Nitin Kumar & Varun Pratap Singh & Sachin Mishra & Naveen Kumar Sharma & Mohit Bajaj & T. M. Yunus Khan, 2023. "Transesterification of Algae Oil and Little Amount of Waste Cooking Oil Blend at Low Temperature in the Presence of NaOH," Energies, MDPI, vol. 16(3), pages 1-13, January.
    6. Ning, Yilin & Niu, Shengli & Wang, Yongzheng & Zhao, Jianli & Lu, Chunmei, 2021. "Sono-modified halloysite nanotube with NaAlO2 as novel heterogeneous catalyst for biodiesel production: Optimization via GA_BP neural network," Renewable Energy, Elsevier, vol. 175(C), pages 391-404.
    7. Mohadesi, Majid & Gouran, Ashkan & Dehghan Dehnavi, Amir, 2021. "Biodiesel production using low cost material as high effective catalyst in a microreactor," Energy, Elsevier, vol. 219(C).
    8. Zhang, Pingbo & Liu, Peng & Fan, Mingming & Jiang, Pingping & Haryono, Agus, 2021. "High-performance magnetite nanoparticles catalyst for biodiesel production: Immobilization of 12-tungstophosphoric acid on SBA-15 works effectively," Renewable Energy, Elsevier, vol. 175(C), pages 244-252.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John, Monnie & Abdullah, Mohammad Omar & Hua, Tan Yie & Nolasco-Hipólito, Cirilo, 2021. "Techno-economical and energy analysis of sunflower oil biodiesel synthesis assisted with waste ginger leaves derived catalysts," Renewable Energy, Elsevier, vol. 168(C), pages 815-828.
    2. Yatish, K.V. & Lalithamba, H.S. & Suresh, R. & Latha, H.K.E., 2020. "Ochrocarpus longifolius assisted green synthesis of CaTiO3 nanoparticle for biodiesel production and its kinetic study," Renewable Energy, Elsevier, vol. 147(P1), pages 310-321.
    3. Hoora Mazaheri & Hwai Chyuan Ong & Zeynab Amini & Haji Hassan Masjuki & M. Mofijur & Chia Hung Su & Irfan Anjum Badruddin & T.M. Yunus Khan, 2021. "An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective," Energies, MDPI, vol. 14(13), pages 1-23, July.
    4. Xu, Chunping & Nasrollahzadeh, Mahmoud & Sajjadi, Mohaddeseh & Maham, Mehdi & Luque, Rafael & Puente-Santiago, Alain R., 2019. "Benign-by-design nature-inspired nanosystems in biofuels production and catalytic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 195-252.
    5. Impha Yalagudige Dharmegowda & Lakshmidevamma Madarakallu Muniyappa & Parameshwara Siddalingaiah & Ajith Bintravalli Suresh & Manjunath Patel Gowdru Chandrashekarappa & Chander Prakash, 2022. "MgO Nano-Catalyzed Biodiesel Production from Waste Coconut Oil and Fish Oil Using Response Surface Methodology and Grasshopper Optimization," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    6. Ahmad, Shamshad & Chaudhary, Shalini & Pathak, Vinayak V. & Kothari, Richa & Tyagi, V.V., 2020. "Optimization of direct transesterification of Chlorella pyrenoidosa catalyzed by waste egg shell based heterogenous nano – CaO catalyst," Renewable Energy, Elsevier, vol. 160(C), pages 86-97.
    7. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    8. Wang, Yi-Tong & Fang, Zhen & Yang, Xing-Xia, 2017. "Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid," Applied Energy, Elsevier, vol. 204(C), pages 702-714.
    9. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
    10. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    11. Lani, Nurul Saadiah & Ngadi, Norzita & Inuwa, Ibrahim Mohammed, 2020. "New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 1266-1277.
    12. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    13. Singh, Thokchom Subhaschandra & Verma, Tikendra Nath, 2019. "Biodiesel production from Momordica Charantia (L.): Extraction and engine characteristics," Energy, Elsevier, vol. 189(C).
    14. Adepoju, T.F. & Ibeh, M.A. & Udoetuk, E.N. & Babatunde, E.O., 2021. "Quaternary blend of Carica papaya - Citrus sinesis - Hibiscus sabdariffa - Waste used oil for biodiesel synthesis using CaO-based catalyst derived from binary mix of Lattorina littorea and Mactra cora," Renewable Energy, Elsevier, vol. 171(C), pages 22-33.
    15. Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
    16. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    17. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    18. Sannagoudar Basanagoudar, Arun & Maleki, Basir & Prakash Ravikumar, Mithun & Mounesh, & Kuppe, Pramoda & Kalanakoppal Venkatesh, Yatish, 2024. "Exploitation of Annona reticulata leaf extract for the synthesis of CeO2 nanoparticles as catalyst for the production of biodiesel using seed oil thereof," Energy, Elsevier, vol. 298(C).
    19. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    20. Zhu, Jishen & Jiang, Weiqiang & Yuan, Zong & Lu, Jie & Ding, Jincheng, 2024. "Esterification of tall oil fatty acid catalyzed by Zr4+-CER in fixed bed membrane reactor," Renewable Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:142:y:2019:i:c:p:207-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.