IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2425-d242476.html
   My bibliography  Save this article

A Unified and Efficient Approach to Power Flow Analysis

Author

Listed:
  • HyungSeon Oh

    (Department of Electrical and Computer Engineering, United States Naval Academy; Annapolis, MD 21402, USA)

Abstract

Highly nonlinear and nonconvex power flow analysis plays a key role in the monitoring, control, and operation of power systems. There is no analytic solution to power flow problems, and therefore, finding a numerical solution is oftentimes an aim of modern computation in power system analysis. An iterative Newton-Raphson method is widely in use. While most times this method finds a solution in a reasonable time, it often involves numerical robustness issues, such as a limited convergence region and an ill-conditioned system. Sometimes, the truncation error may not be small enough to ignore, which can make the iterative process significantly expansive. We propose a new unified framework, based on the Kronecker product, that does not involve any truncation, and which is bilinear to make it possible to incorporate statistical analysis. The proposed method is tested for power flow, state estimation, probabilistic power flow, and optimal power flow studies on various IEEE model systems.

Suggested Citation

  • HyungSeon Oh, 2019. "A Unified and Efficient Approach to Power Flow Analysis," Energies, MDPI, vol. 12(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2425-:d:242476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prusty, B Rajanarayan & Jena, Debashisha, 2017. "A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1286-1302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. HyungSeon Oh, 2021. "Distributed optimal power flow," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-27, June.
    2. Vedik Basetti & Shriram S. Rangarajan & Chandan Kumar Shiva & Sumit Verma & Randolph E. Collins & Tomonobu Senjyu, 2021. "A Quasi-Oppositional Heap-Based Optimization Technique for Power Flow Analysis by Considering Large Scale Photovoltaic Generator," Energies, MDPI, vol. 14(17), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harshavardhan Palahalli & Paolo Maffezzoni & Giambattista Gruosso, 2021. "Gaussian Copula Methodology to Model Photovoltaic Generation Uncertainty Correlation in Power Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-16, April.
    2. Xiaoyang Deng & Jinghan He & Pei Zhang, 2017. "A Novel Probabilistic Optimal Power Flow Method to Handle Large Fluctuations of Stochastic Variables," Energies, MDPI, vol. 10(10), pages 1-21, October.
    3. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    4. Samet, Haidar & Khorshidsavar, Morteza, 2018. "Analytic time series load flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3886-3899.
    5. González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
    6. Mohamed A. M. Shaheen & Hany M. Hasanien & Said F. Mekhamer & Mohammed H. Qais & Saad Alghuwainem & Zia Ullah & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Probabilistic Optimal Power Flow Solution Using a Novel Hybrid Metaheuristic and Machine Learning Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-23, August.
    7. Mohamed S. Hashish & Hany M. Hasanien & Haoran Ji & Abdulaziz Alkuhayli & Mohammed Alharbi & Tlenshiyeva Akmaral & Rania A. Turky & Francisco Jurado & Ahmed O. Badr, 2023. "Monte Carlo Simulation and a Clustering Technique for Solving the Probabilistic Optimal Power Flow Problem for Hybrid Renewable Energy Systems," Sustainability, MDPI, vol. 15(1), pages 1-25, January.
    8. Ziwei Zhu & Shifan Lu & Sui Peng, 2018. "An Improved Stochastic Response Surface Method Based Probabilistic Load Flow for Studies on Correlated Wind Speeds in the AC/DC Grid," Energies, MDPI, vol. 11(12), pages 1-14, December.
    9. Stavros Lazarou & Vasiliki Vita & Lambros Ekonomou, 2018. "Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-17, November.
    10. Hang Li & Zhe Zhang & Xianggen Yin, 2020. "A Novel Probabilistic Power Flow Algorithm Based on Principal Component Analysis and High-Dimensional Model Representation Techniques," Energies, MDPI, vol. 13(14), pages 1-14, July.
    11. Prusty, B. Rajanarayan & Jena, Debashisha, 2018. "An over-limit risk assessment of PV integrated power system using probabilistic load flow based on multi-time instant uncertainty modeling," Renewable Energy, Elsevier, vol. 116(PA), pages 367-383.
    12. Ziqiang Zhou & Fei Tang & Dichen Liu & Chenxu Wang & Xin Gao, 2020. "Probabilistic Assessment of Distribution Network with High Penetration of Distributed Generators," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
    13. Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Dichen Liu & Chenxu Wang & Fei Tang & Yixi Zhou, 2020. "Probabilistic Assessment of Hybrid Wind-PV Hosting Capacity in Distribution Systems," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    15. Filip Mišurović & Saša Mujović, 2022. "Numerical Probabilistic Load Flow Analysis in Modern Power Systems with Intermittent Energy Sources," Energies, MDPI, vol. 15(6), pages 1-20, March.
    16. Mohammad Rayati & Pasquale De Falco & Daniela Proto & Mokhtar Bozorg & Mauro Carpita, 2021. "Generation Data of Synthetic High Frequency Solar Irradiance for Data-Driven Decision-Making in Electrical Distribution Grids," Energies, MDPI, vol. 14(16), pages 1-21, August.
    17. Esau Zulu & Ryoichi Hara & Hiroyuki Kita, 2023. "An Efficient Hybrid Particle Swarm and Gradient Descent Method for the Estimation of the Hosting Capacity of Photovoltaics by Distribution Networks," Energies, MDPI, vol. 16(13), pages 1-17, July.
    18. Sui Peng & Huixiang Chen & Yong Lin & Tong Shu & Xingyu Lin & Junjie Tang & Wenyuan Li & Weijie Wu, 2019. "Probabilistic Power Flow for Hybrid AC/DC Grids with Ninth-Order Polynomial Normal Transformation and Inherited Latin Hypercube Sampling," Energies, MDPI, vol. 12(16), pages 1-21, August.
    19. Hasan, Kazi Nazmul & Preece, Robin & Milanović, Jovica V., 2019. "Existing approaches and trends in uncertainty modelling and probabilistic stability analysis of power systems with renewable generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 168-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2425-:d:242476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.