IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6714.html
   My bibliography  Save this article

Laser-induced porous graphene films from commercial polymers

Author

Listed:
  • Jian Lin

    (Rice University
    Smalley Institute for Nanoscale Science and Technology, Rice University)

  • Zhiwei Peng

    (Rice University)

  • Yuanyue Liu

    (Rice University)

  • Francisco Ruiz-Zepeda

    (University of Texas at San Antonio, One UTSA Circle)

  • Ruquan Ye

    (Rice University)

  • Errol L. G. Samuel

    (Rice University)

  • Miguel Jose Yacaman

    (University of Texas at San Antonio, One UTSA Circle)

  • Boris I. Yakobson

    (Rice University
    Smalley Institute for Nanoscale Science and Technology, Rice University
    Rice University)

  • James M. Tour

    (Rice University
    Smalley Institute for Nanoscale Science and Technology, Rice University
    Rice University)

Abstract

The cost effective synthesis and patterning of carbon nanomaterials is a challenge in electronic and energy storage devices. Here we report a one-step, scalable approach for producing and patterning porous graphene films with three-dimensional networks from commercial polymer films using a CO2 infrared laser. The sp3-carbon atoms are photothermally converted to sp2-carbon atoms by pulsed laser irradiation. The resulting laser-induced graphene (LIG) exhibits high electrical conductivity. The LIG can be readily patterned to interdigitated electrodes for in-plane microsupercapacitors with specific capacitances of >4 mF cm−2 and power densities of ~9 mW cm−2. Theoretical calculations partially suggest that enhanced capacitance may result from LIG’s unusual ultra-polycrystalline lattice of pentagon-heptagon structures. Combined with the advantage of one-step processing of LIG in air from commercial polymer sheets, which would allow the employment of a roll-to-roll manufacturing process, this technique provides a rapid route to polymer-written electronic and energy storage devices.

Suggested Citation

  • Jian Lin & Zhiwei Peng & Yuanyue Liu & Francisco Ruiz-Zepeda & Ruquan Ye & Errol L. G. Samuel & Miguel Jose Yacaman & Boris I. Yakobson & James M. Tour, 2014. "Laser-induced porous graphene films from commercial polymers," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6714
    DOI: 10.1038/ncomms6714
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6714
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khan, Hafsah A. & Tawalbeh, Muhammad & Aljawrneh, Bashar & Abuwatfa, Waad & Al-Othman, Amani & Sadeghifar, Hasan & Olabi, Abdul Ghani, 2024. "A comprehensive review on supercapacitors: Their promise to flexibility, high temperature, materials, design, and challenges," Energy, Elsevier, vol. 295(C).
    2. Viorel Ionescu & Adriana Elena Balan & Alexandra Maria Isabel Trefilov & Ioan Stamatin, 2021. "Exergetic Performance of a PEM Fuel Cell with Laser-Induced Graphene as the Microporous Layer," Energies, MDPI, vol. 14(19), pages 1-18, September.
    3. Jung Bae Lee & Jina Jang & Haoyu Zhou & Yoonjae Lee & Jung Bin In, 2020. "Densified Laser-Induced Graphene for Flexible Microsupercapacitors," Energies, MDPI, vol. 13(24), pages 1-9, December.
    4. Kumar, Rajesh & Singh, Rajesh Kumar & Singh, Dinesh Pratap, 2016. "Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: Graphene and CNTs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 976-1006.
    5. Kumar, Rajesh & Joanni, Ednan & Savu, Raluca & Pereira, Matheus S. & Singh, Rajesh K. & Constantino, Carlos J.L. & Kubota, Lauro T. & Matsuda, Atsunori & Moshkalev, Stanislav A., 2019. "Fabrication and electrochemical evaluation of micro-supercapacitors prepared by direct laser writing on free-standing graphite oxide paper," Energy, Elsevier, vol. 179(C), pages 676-684.
    6. Hyeonwoo Kim & Suwon Hwang & Taeseung Hwang & Jung Bin In & Junyeob Yeo, 2021. "Digitally Patterned Mesoporous Carbon Nanostructures of Colorless Polyimide for Transparent and Flexible Micro-Supercapacitor," Energies, MDPI, vol. 14(9), pages 1-11, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.